【摘 要】
:
近代物理学和应用数学的发展,要求分析和控制客观现象的数学能力向着富有全局性的高、精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科——非线性泛函分析.非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的若干一般性理论和方法.因其能很好的解释自然界中的各种各样的自然现象,在实际生产生活中有很大的应
论文部分内容阅读
近代物理学和应用数学的发展,要求分析和控制客观现象的数学能力向着富有全局性的高、精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科——非线性泛函分析.非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的若干一般性理论和方法.因其能很好的解释自然界中的各种各样的自然现象,在实际生产生活中有很大的应用,加之对物理学、化学、生物科学以及天文学等相关学科的发展有积极的影响,近年来受到了国内外数学及自然科学界的高度重视.非线性微分方程问题源于应用数学、物理学、控制论等各种应用学科中,是微分方程领域中一类重要问题,是目前非线性泛函分析研究中最为活跃的领域之一,也是近年来讨论的热点,引起了科学家的广泛关注.本文利用变分法,极小极大理论以及临界点理论,研究了几类非线性微分方程问题的解的存在性.本文共分为三章:在第一章中,我们概述了一些本专业的基本知识以及相关的理论渊源.在第二章中,我们获得了以下带有次二次项的薛定谔方程-△u+V(x)u=f(x,u) (2.1.1)的解的存在性,其中y(x)∈C(RN,R)且对所有的x∈RN都是正的,f(x,u)∈C(RN×R,R)是正函数.在关于V和f的其他有效条件下,我们用临界点理论中的标准极小化讨论,获得了一种新方法可以证明(2.1.1)至少有一个解.在第三章中,我们考虑了以下二阶非自治哈密顿系统:z(t)-L(t)z+▽H(t,z)=0 (3.1.1)的同宿解的存在性,其中L(t)∈C(R,RN),且对所有的t∈R都是对称正定矩阵,H(t,z)∈C1(R×RN,R)是一个正定连续泛函,▽H(t,z)满足次临界条件:对所有的2<p<2*,|▽H(t,z)|≤(|t|p+1),其中,如果N≥3,则2*=2N/(N-2);如果N=1,2,则2*=+∞.对H和L采用其他合理的条件,我们利用了临界点理论中的标准极小极大方法获得了一个新的定理,保证(3.1.1)至少有一个解.
其他文献
近年来,中央“一号文件”对于农村环境治理的重视呈现阶段式的上升。国家对农村环境的治理不断深入细化,国家的权力开始触碰到普通村民的私人生活,对于生活垃圾的治理,代表着国家权威开始通过规范化和专业化的要求指导村民的日常生活,国家与社会的关系发生新一轮的变化。本文以贴近村民日常生活的垃圾治理为切入点,研究从家户自治,到镇政府主导下的治理,再到镇政府主导、村干部协同、村民参与的多元主体治理这一变化过程中,
关于微分算子自伴性及微分算子乘积的自伴性的研究在文献中已经得到了很好的结果,由于每一个形式自伴的微分算式都可以写成一个Hamilton系统,因此Hamilton系统的自伴扩张是较微分算子自伴扩张更为一般性的推广形式,我们可以借鉴研究微分算子自伴扩展的相关理论和方法来研究Hamilton算子的自伴性.在本文中研究方法不同于[30]的方法,本文的主要目的是利用著名的Calkin方法及Hamilton算
一直以来党和政府就非常关注“三农”问题,“十四五”时期更是提出要“把实施乡村振兴战略摆在优先位置”,并就推动实施乡村振兴战略,实现高质量发展进行了重大部署。但另一方面,自改革开放以来,随着工业化、城镇化的快速发展,我国乡村发展也出现了人口流失、土地荒废、经济衰退、文化破坏、城乡差距扩大等问题,如何正视挑战,把握机遇,全面实现乡村的振兴,需要在困境中找新出路,需要在成功中归纳新方法。本研究主要梳理了
分数阶微分方程是常微分方程的一个重要分支.近年来,因其自身理论体系的不断完善以及与许多实际应用(如:物理学、机械力学、化学和工程学等等)密切的联系,受到了国内外数学界和自然科学界的重视并不断深入研究,分式微分方程已成为现代数学中一个重要研究方向之一分数阶微分方程的边值问题是近年讨论的热点,是目前这方面研究中一个十分重要的领域.本文主要利用锥理论,不动点定理等非线性泛函的方法讨论了几类非线性分式微分
哈密顿系统的研究源于数理科学,生命科学以及其它的许多科学领域,特别是天体力学,量子力学,航天科学以及生物工程发展的需要,是微分算子研究的核心内容.虽然几乎所有的现实问题所产生的哈密顿系统都是非线性的,但是为了比较准确地描述实际问题在某种条件下的一些性质,就需要对非线性哈密顿系统进行线性化.本文所研究的就是线性哈密顿系统.本文在孙炯,王爱萍等人关于微分算子的点谱(见[25])和杨传富,杨孝平,黄振友
微分方程组理论是微分方程理论的一个重要分支,它所呈现出来的结构具有深刻的物理背景和现实意义,具有重要的的研究价值和研究意义.非线性边值问题来源于应用数学和物理学的多个方面,是此类研究中最为活跃的领域之一.非线性微分方程(组)多点边值问题是其中一个重要的分支,在应用数学物理学和工程学等应用学科上有着极为重要的作用.因此,研究非线性微分方程(组)多点边值问题解的存在性,进而研究可数个正解的性质就变得非
近代物理学和应用数学的发展,要求分析和控制客观现象的数学能力向着富有全局性的高、精水平发展,从而使非线性分析成果不断积累,逐步形成了现代分析数学的一个重要的分支学科——非线性泛函分析.非线性泛函分析是数学中既有深刻理论又有广泛应用的研究学科,以数学和自然科学中出现的非线性问题为背景,建立了处理非线性问题的若干一般性理论和方法.因其能很好的解释自然界中的各种各样的自然现象,在实际生产生活中有很大的应
作为运筹学的一个分支,一门应用科学,排序问题有着深刻的实际背景和广阔的应用前景。在《美国国防部与数学科学研究》的报告中,作者认为“20世纪90年代以至整个21世纪数学发展的重点,将从连续的对象转向离散的对象,并且组合最优化将会有很大的发展”,因为“在这个领域内存在着大量急需解决而又极端困难的问题,其中包括如何对各个部件进行分隔,布线和布局的问题”。这“分隔,布线和布局”就与排序有关。工件具有学习效
本论文主要研究非线性规划问题的光滑罚函数及罚算法,全文共分三章.第一章主要介绍非线性规划问题和光滑罚函数方法的研究现状及本文得到的主要结果.第二章提出了带不等式约束的非线性规划问题的一类新的罚函数,它的一个子类可以光滑逼近l1精确罚函数,同时这种逼近性质可以推广到低阶罚函数.基于此类新的罚函数我们给出了一种罚算法,它每次迭代得到罚问题的全局精确解或非精确解,从而算法在很弱的条件下总是可行的.在不需
本文共分四节.第一节为本文的引言,主要介绍了椭圆偏微分方程解的水平集凸性问题的研究成果,并引出了本文的主要定理.第二节为本文的预备知识.介绍了曲线和曲面曲率的基本知识,包括曲线曲率的计算和曲面的第一基本形式和第二基本形式,并且给出了判断曲面凸性的方法.接着介绍了水平集,水平集凸性的概念和水平集的曲率矩阵,并给出定理证明过程中所涉及到的定理和引理.第三节和第四节是主要定理的证明.我们选取适当的试验函