关于Oliver p-群猜想

来源 :湖北大学 | 被引量 : 0次 | 上传用户:guhong_2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文主要关注了Oliverp-群猜想这个问题。论文分为三个部分:第一部分是引言,主要介绍了 Oliver p-群猜想的已有结果,并给出了本文一些的结论.第二部分是预备知识,介绍了论文涉及的群论基础知识,重点回顾了有限p-群的相关知识。第三部分首先介绍了 Oliver p-群猜想:设p是奇素数,S是有限p-群,则有J(S)≤X(S),其中J(S)表示群S的Thompson子群,X(S)表示群S的Oliver子群。回顾了该猜想的部分结果:当S/X(S)的幂零类小于等于4时,猜想成立;当S为一般线性群GLn(Fq)或对称群Sn的Sylow p-子群时猜想成立等这些结果。在此基础之上,本文验证了对几类小阶典型群的Sylow p-子群而言,Oliver p-群猜想仍然成立。
其他文献
完全非线性偏微分方程理论起源于古典微分几何中的Weyl问题和Minkowshi问题,以及K¨ahler几何中Calabi猜想的研究.经历上世纪70年代的突破,完全非线性偏微分方程目前已经发展成为一个非常活跃的重要数学分支.k-Hessian方程是一类重要的完全非线性偏微分方程,它出现在预定Weingarten曲率问题,Minkowski问题等一系列重要的数学问题中.本文我们考虑了抛物型k-Hess
这篇论文分为两个部分:(i)双线性分数次积分在消失Morrey空间上的有界性;(ii)沿曲线的分数次积分在Lebesgue空间上的有界性.一方面,作者建立了双线性分数次积分算子Bα和次双线性分数次极大算子Mα在广义消失 Morrey 空间V0Lp,φ(Rn),V∞Lp,φ(Rn)和V(*)Lp,φ(Rn)上的有界性.为此,作者首先用两个经典分数次积分算子Iα的乘积来控制Bα,得到了mq,φ(Bα(
环上的单位上三角矩阵群是幂零群的一个非常重要的群例,并且具有非常整齐的结构,其上、下中心列是重合的.一般地,其子集并不构成一个群,即使在成群的情形下,其上、下中心列的规律也变得复杂.环上的上三角矩阵环构成的Lie环也是幂零Lie环的一个基本例子,其上、下中心列也是一致的,其子集一般也不构成一个Lie子环,即使在构成Lie环的前提下,其上、下中心列的结构也变得很复杂.本文将以整数环上的上三角矩阵环的
有机磁性材料及其磁性形成机理一直是物理学、化学和材料学中的重要研究课题。近年来,随着计算物理的兴起,双自由基分子和有机金属三明治团簇的结构和磁学性质的理论探索受到广泛关注。本论文首先介绍了研究背景和基于密度泛函理论的第一性原理计算方法,然后系统地研究了不同耦合子对双自由基分子的磁性影响,以及不同配体对有机金属三明治团簇的结构和磁性影响。本论文的研究工作包括:我们选取不同的对苯撑聚合分子及其衍生物作
众所周知,曲率流的研究起源于几何不等式的研究,其中曲率流的扩张性在证明超曲面的不等式中发挥重要的作用,由此吸引了众多学者,最著名的是Huisken和Ilmanen的研究,他们利用逆平均曲率流证明了Riemannnian-Penrose不等式.随着研究的深入,逆曲率的存在性和收敛性问题不仅在证明几何不等式方面发挥重要作用,同时也在凸几何的Minkowski问题等方面有着重要应用.因此也吸引了众多专家
有关矩阵方程的理论和应用在国内外已经有比较系统深入地研究.矩阵方程在众多科学领域都有着广泛的运用.M.Asuncin Beitia在1985年考虑了矩阵方程(AX-XA)W=0的解空间的维数问题,即矩阵方程AX-XA=0限制在子空间W上的解空间的维数.通过计算与对角矩阵交换的矩阵子空间,得到了当A为对角矩阵时,矩阵方程(AX-XA)W=0的解空间的维数.本文将从Frobenius关于给定矩阵中心化
设G是有限群,用B(G)表示群G的Burnside环,本文主要围绕了Burnside环的幂等元进行研究。通过本原幂等元公式(?)我们可以知道最主要的就是求解其中的莫比乌斯函数μ(K,H),进而得出B(G)的本原幂等元.论文分了以下几部分来写:第一部分是给出了群作用与G-set的介绍和相关定理的证明,还有范畴的定义,这是论文的预备知识部分,也为后面部分的证明和计算提供理论基础。接着回顾了Burnsi
这篇论文包含两个部分:(i)某类双线性算子在消失广义Morrey空间上的有界性;(ii)沿空间可变曲线的Hilbert变换在Lebesgue空间上的有界性.在第一部分中,作者将考虑满足如下条件的双线性算子T:存在一个依赖于T的正的常数C(T),使得对任意有紧支集的可测函数f和g,t∈R且0<|t|≤1,x∈Rn以及0n(?)supp(f(x-t·))∩supp(g(x-·)),其中(?),作者利用
设A是单位圆盘D={z:|z|<1}上的解析函数族.我们用u表示A中满足f(0)=f’(0)-1=0及|(z/f(z))2f’(Z)-1|<1,|z|<1条件的所有函数构成的函数族.用Ωλ表示函数族A中满足f(0)=f’(0)-1=0及|zf’(z)-f(z)|<λ,0<λ≤1/2,|z|<1条件的所有函数构成的函数族.在这篇文章中,我们先研究了Ωλ的凸性半径、卷积性质、闭凸性质、支撑点以及极值点
幂零群是代数学中的一个基本研究对象。熟知最基本的幂零群例U(n,R)为含1交换环R上所有单位上三角矩阵作成的群,其幂零类等于n-1。U(n,R)的上、下中心列是重合的,但U(n,R)的子群的上、下中心列却相差甚远。对于有理数域Q,取U(n,Q)的子集G形如(?)其中Gij是有理数加群(Q,+)的子群,1≤i