同步定频微电网下垂控制策略

来源 :山东理工大学 | 被引量 : 0次 | 上传用户:jinyu9782
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微电网促进了分布式可再生能源的大规模发展与应用,有效提高了用户供电可靠性。下垂控制具有可靠性高、配置灵活、即插即用的特性,是目前孤岛微电网运行控制的研究热点。传统下垂控制应用于微电网时,由于直接模拟同步发电机功率-频率调节特性,存在频率控制不准确及频率稳定问题。同步定频微电网利用卫星授时信号使系统频率始终运行于50Hz,避免了传统下垂控制存在的频率控制偏差及频率稳定问题。目前,同步定频微电网中所采取的下垂控制依然延续有功无功解耦的控制思路,使得下垂控制存在设计复杂,易产生环流等问题。针对上述问题,本文提出基于I-U下垂的同步定频电流控制方法。该方法以卫星授时信号作为相位参考基准直接固定逆变器输出电流的相位,使各逆变器输出电流相位一致,避免了电源间产生不流经负荷的环流;由I-U下垂控制器给出输出电流的幅值指令值,控制电压运行于合理范围内。基于I-U下垂的同步定频电流控制方法具有控制策略设计简单、功率分配效果好、稳定性高等优势,但其仅考虑对工频电流信号的控制,在含非线性负载的微网系统中存在电压畸变严重的问题。为此提出基于U-I下垂的同步定频电流控制方法。该方法采用了下垂-电压-电流三环控制结构,由下垂控制器中的相角控制环路控制各逆变器输出电流相位一致,由U-I下垂控制根据输出电流的大小给出电压幅值的控制指令,保证电压运行于合理范围内。本文结合所提两种控制方法的原理分别给出了逆变器控制策略的参数设计原则。通过构建简单微电网的状态空间模型,分析控制参数对系统稳定性影响的方式,为参数优化提供依据。最后,仿真及实验证明了所提方法的可行性以及状态空间模型分析结果的有效性。
其他文献
采用电加热系统的叶片模具,加热温度比循环水加热更高,满足多种不同的加热需求,且无需设置循环管路,可极大地减轻模具重量。但目前叶片模具采用电加热方式还存在若干问题:例如叶片模具工作过程中传热不均匀、加热层温度与型腔面层温度存在滞后性等现象,导致模具整体温差和型腔面温差过大,若在叶片生产过程中温度控制不当,就会造成叶片模具局部烧毁,造成损失。针对上述出现的问题,本文对电加热叶片模具进行了结构方面的改进
覆盖与滴灌的优势相结合能够使土壤中有限的水分循环于土壤和覆盖材料之间,能够减小玉米的棵间蒸发,因此覆盖滴灌技术以其增温保墒、降低无效蒸发、改善土壤水热条件、提高净光合能力等优点而得到广泛应用。本研究基于2019-2020年在北京市大兴区进行了两年的田间玉米试验,测量土壤水分、土壤温度、玉米冠层间温湿度、玉米的生理指标以及玉米叶片的光合特性参数,对不同覆盖处理间的农田小气候、玉米的生理指标和光合特性
输电线路故障后快速准确定位故障,不仅能够及时修复故障线路,保证用户供电,而且对电力系统的安全稳定和经济运行也有着重要意义。行波故障定位方法测距准确,适用范围广,目前在电力线路上得到广泛应用。输电线路行波故障测距系统一般以双端法为主,单端法为辅。当线路某一端行波测距装置未能捕捉到故障初始行波时,双端测法就会测距失败;另外,部分线路未按照双端方法进行配置。上述的情况下,单端法是双端法的有效补充。单端法
现如今,工业生产活动产生的有毒有害气体越来越多,造成环境污染并危害生命健康。由于半导体金属氧化物(MOs)的电阻对周围气氛的变化高度敏感且具有易制备、性质稳定、成本低等优点,基于MOs的气体传感器已被广泛用于检测有毒有害气体(H2S、NO2、CO等)。在半导体MOs中,CuO和ZnO纳米材料具有结构稳定、易于制取、无毒等诸多优点,被广泛用于研究对有害气体(如H2S)的气敏性能。但是,基于纯CuO和
现如今,我国城市化的进程不断加快,机动车保有量不断增加,而相对的道路基础设施的建设速度则相对缓慢,这使得城市路网中部分交叉口在高峰时段处于过饱和状态,从而引发了一系列交通问题,严重影响了城市居民出行效率。随着路网负荷增加,车流的运行特征产生了一系列变化,致使传统的信号配时策略已经难以应对。本文以电警、地磁及滴滴平台数据为基础,对绿灯空放、过饱和以及排队溢流问题交叉口进行分析,提出不同交通状态下的交
随着先进电子和电力系统的迅速发展,高储能密度薄膜类电容器变得尤为重要。聚合物介电复合材料由于韧性好、成本低和易加工等特点,成为薄膜电容器的主要介质。制备高性能复合膜的核心问题是兼顾高介电常数、高击穿强度和低介电损耗。因此,在这项工作中,我们主要研究了高储能密度聚酰亚胺复合材料的多层次结构设计,对复合材料中涉及的介电常数(εr)、击穿强度(Eb)和介电损耗(tanδ)等性能的影响规律,并分析了提高聚
微光是指只有少量自然光的黑暗环境(小于10-3lx),微光图像的重建作为图像重建技术向低照度方向的延伸,能够有效弥补在夜间等微光环境下,人眼无法有效识别目标场景的缺陷,对深海探测、军事作战、医学检测等有着极其重要的应用价值。本文的工作在微光环境下展开,搭建成像实验平台获取微光图像,并对微光图像的恢复与重建方法展开以下研究:1.为了获取微光环境下三维目标物体的图像,依据离轴集成成像原理设计成像系统。
轮毂电机安装于车轮内,需要满足高功率密度和高转矩密度的要求;同时,由于安装空间狭小封闭,空气流动不通畅,使得轮毂电机散热能力较差,大量的热量如不能及时散出,将严重影响轮毂驱动系统乃至车辆的安全运行。液冷冷却凭借其散热效果较好且成本较低的优势,成为轮毂电机冷却的首选方式。又因为水冷轮毂电机安装在车轮内,轮毂驱动车辆运行时受到路面激励将通过车轮直接作用在轮毂电机上,影响冷却结构内部的流场特性,进而对轮
车辆在积水路面高速行驶时,流过轮胎接地区域内的积水无法及时从胎面花纹中排出,导致滑水现象产生,严重威胁行车安全。为提高临界滑水速度,改善汽车安全性和操作稳定性,众多学者基于花纹结构特性对轮胎滑水进行研究,但花纹结构对轮胎诸多性能均具有重要影响,改善滑水性能的同时会造成其他性能的降低。因此,在不改变胎面花纹结构的前提下,研究轮胎流场特性具有重要意义。本文基于仿生非光滑减阻理念,将仿生非光滑结构应用于
受电弓是火车从电网中获取电能的关键设备,其质量决定着列车的电能传输和运行安全。当前的受电弓检测技术难以满足实时且精确的需求,因此本文设计并改进了一种目标追踪算法,在实时监测受电弓运行状态的同时并对受电弓脱落故障进行快速检测。本文以KCF算法为基础,以解决其无法满足当前列车运行场景变换需求的问题为优化和改进的方向,进而设计一种可以实际应用在列车受电弓的安全状态检测中的算法。具体内容包括:(1)针对K