论文部分内容阅读
大数据时代的来临和第五代移动通信的发展,使得人们对高速信号传输的需求日益广泛和迫切,而高速信号的传输与集成电路的进步密不可分。随着近年来电路特征尺寸的减小,互连对电路整体性能的影响逐渐变得明显。高密度、高速度、小型化的集成电路发展趋势,对互连性能提出了更高的要求。传统集成互连如微带线、带状线等,其开放式结构面临着严重串扰;矩形波导、圆波导等分立式波导互连则受到体积大、不易集成的限制;以光互连为代表的新型互连在远距离传输时具有优势,但在片上、片间应用时存在着成本较高、兼容性差等局限性。基片集成毫米波电互连,如基片集成波导、基片集成同轴互连等,有着宽频带、低成本、低损耗、易集成、抗串扰的优点,可为高速信号传输提供性能良好的物理信道。本文通过理论分析和实验验证,研究了基片集成毫米波电互连技术及其在高速信号传输方面的应用。主要研究工作和创新点可概括为以下几点:(1)提出了以半模基片集成波导互连作为物理信道的高速信号传输系统。该系统采用正交移相键控(Quadrature phase shift keying,QPSK)技术同时传输两路独立信号。通过精确的数学建模,得到了该系统的传输模型,进而推导出了输出信号的幅值与相位,并分析了信道间的串扰,最终提出了幅值、相位的补偿办法。有/无补偿的对比实验结果表明,采用该补偿方法可以显著地提高传输系统的信号完整性,并有效地抑制信道间的串扰。在实验中,该系统实现了15Gb/s的信号传输速率。(2)提出了带有类同轴转接结构的基片集成同轴互连。该互连基于TEM(Transverse electromagnetic)模式,可直接传输基带信号,并实现了宽带的阻抗匹配和良好的信号完整性。实验测得其3dB带宽为DC(direct current)67GHz,传输速率达到30Gb/s,且误码率低于10-12。此外,将此互连与球状引脚栅格阵列(Ball grid array,BGA)封装进行了协同设计。(3)提出了多通道的基片集成同轴互连阵列及其转接结构和设计方法。该阵列可以在水平方向、垂直方向任意扩展通道数,实现多路信号并行传输。此外,引入了金属栅栏结构以改善阵列中相邻通道的隔离度,使得串扰减小约23dB。并为该阵列中的多层通道设计了阵列化的类同轴转接结构,以便于测试和应用。对上述带有转接结构的基片集成同轴互连阵列,提出了设计方法。根据该方法,采用低温共烧陶瓷(Low temperature co-fired ceramic,LTCC)工艺,设计加工了一款15×3通道的基片集成同轴互连阵列,该阵列可实现1.35Tb/s的总传输速率,且相邻通道间的串扰小于-30dB。