定常非线性薛定谔方程的两网格有限元方法

来源 :湘潭大学 | 被引量 : 1次 | 上传用户:OSEric
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文以快速求解定常非线性薛定谔型方程边值问题为目标,探索基于粗细两层网格有限元离散的数值解法,构造计算格式,开展理论分析与数值实验。  两网格有限元解法的原理是:先在粗网格上求解原问题的有限元解,再在细网格上求一个被大大简化了的问题的解,使该解与细网格上原问题的有限元解有相同的收敛阶(在某种能量范数下)。就薛定谔方程而言,简化是指对耦合方程组解耦,将非线性问题线性化。本文构造了问题的两网格算法,并给出了两网格算法解的误差估计,得出了用两网格算法求得的数值解和普通有限元解具有相同的收敛阶(在k·k1范数下)的结论。由于粗网格可选得很粗,所以两网格有限元解法能极大地减少计算工作量。
其他文献
本文研究求解常微分方程初值问题  y′(t)=f(t,y(t)), t∈I=[0,T],y(0)=y0  和延迟微分方程初值问题  y′(t)=f(t,y(t),y(t-τ)),0≤t≤T,y(t)=ρ(t),-τ≤t≤0  的
本论文利用变分方法研究一类拟线性Schr6dinger方程此处公式省略:非平凡解的存在性,其中Ω是RN中的光滑区域(有界或无界),h(x,u)为Ω×R上的连续函数。我们的工作主要包括下面两
渐近分析在数学,物理及其它科技分支的研究中的应用十分的广泛,它是处理当系统中某参数很大或很小时求其近似解一类问题的有力工具。这一学科的重要进展主要来自于二十世纪对
具有上下层关系的结构称为递阶.在实际生活中,绝大多数问题都具有系统递阶性,因此多层规划逐渐引起人们的重视,而作为多层规划最基本的形式一二层线性规划,已经取得很多重要
令R是一个环(代数),对于给定的正整数k≥1,A与B的k-交换子递推地定义为此处公式省略:,其中此处公式省略:若映射此处公式省略:对任意A,B∈R满足此处公式省略:,则称Φ保持强k-交换性.本
奇异摄动初值问题出现于很多的实际应用中,如控制系统、化学反应理论、流体力学、燃烧、生物、医学、经济等.它们可被看作为一类特殊的刚性问题.由于这类问题的经典Lipschitz
本文考虑Degasperis-Procesi方程稀疏波解的全局存在性,稀疏波解指有以给定终端状态的解,左状态小于右状态。本文证明了Degasperis-Procesi方程初值问题这类弱解的全局存在性
分数微分方程在许多学科领域有广泛的应用,如:物理、力学、化学、工程等.近年来,分数微分方程的理论取得了长足的发展,获得了许多新的结果.  在本文中,首先介绍了问题的研