广义凸性及其在最优化问题中的应用

来源 :内蒙古大学 | 被引量 : 15次 | 上传用户:sxuuboo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究广义凸性及其在极值问题、对偶问题、Hahn-Banach定理和向量拟平衡系统问题等最优化问题中的一些应用。主要工作如下:在第二章里,得到了严格预不变凸函数的两个性质,这些性质包括与中间点严格预不变凸性和预不变凸性有关的一个充分条件以及与半严格预不变凸性和中间点严格预不变凸性有关的一个充要条件。证明了两个预不变凸函数的比是不变凸函数,因此,对Yang、Yang和Teo在文献中提出的公开问题作出了肯定的回答。在第三章里,首先得到了严格B-预不变凸函数的一个充分条件,然后给出了严格B-预不变凸函数的一些性质,最后讨论了严格B-预不变凸函数在极值问题中的应用。在第四章里,纠正了文献的定理4.6或定理4.7中的错误,并用η关于第一变元是仿射的和η是斜对称的这两个条件代替η满足条件C,得到了(严格)伪不变单调性和拟不变单调性的新的必要条件。
其他文献
本文主要对细分曲线算法及其应用进行了研究,细分方法近年来已成为计算机图形学领域的一项重要研究内容.但是,要进一步拓广细分方法的应用范围(尤其在CAD领域),还有很多工作
本文以微生物发酵法生产1,3-丙二醇为背景,研究非线性动力系统的参数辨识与优化。本课题受到国家自然科学基金项目“非线性分段光滑动力系统的优化理论与算法”(编号10471014)、国家十五科技攻关项目“发酵法生产1,3-丙二醇”(编号2001BA708801-04)资助。本文主要内容包括甘油转化为1,3-丙二醇的非线性脉冲系统及多层参数辨识模型,论述了非线性脉冲动力系统性质、辨识模型的可辨识性以及辨
本文主要研究了具有时变多延时Cohen-Grossberg神经网络(CGNNs)平衡点的全局鲁棒稳定性及一组具有常耦合的神经网络的同步特性. 在第一部分,基于Lyapunov泛函方法,研究了多延
众所周知,平面微分系统的极限环分支是微分方程理论的重要研究课题,其中最著名的是H ilb e rt第十六问题的后半部分。这些问题引起了众多优秀数学家的高度重视和关注,获得了一大
  对一个复的、可分的Hilbert空间H,设L(H)表示作用在H上的全体有界线性算子。算子理论中的一个最基本的问题是寻找两个算子的完全相似不变量,即对L(H)中的算子A和B,什么时候
本文首先定义一种双权-Arλ3(λ1,λ2,Ω)-权,然后证明A-调和张量的嵌入不等式。这些结果可用来研究从Banach空间Lp(D,Λl)到Sobolev空间W1,p(D,Λl-1),l=1,2,…,n的homotopy算子的加
自钟万勰院士1994 年提出齐次线性自治动力系统的精细算法HPD以来,这一计算力学、工程应用与计算数学的学术交叉点迅速发展,已成为学术热点。本文基于已有的研究成果,对受抑动态
图论是数学的一个分支,特别是离散数学的一个重要分支,它在物理、化学、天文、地理、生物学,尤其是计算机科学中有非常广泛的应用. 本文主要研究图的标号问题,图的标号问题起