TGDI汽油机燃烧系统多因素组合工况匹配研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:li81641143
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在燃油车节能减排的大背景下,燃烧系统优化成为改善汽油机燃油经济性与排放性的重要环节。为了进一步提升汽油机燃油经济性与排放特性,同时完善仿真评价燃烧系统的研究过程,本文以一款TGDI汽油机燃烧系统为研究对象,对进气道结构、喷油参数匹配对燃烧系统的影响进行了CFD仿真研究;选取发动机额定工况点与车辆常用工况点(2000 r/min@0.2 MPa),就活塞形状对燃烧系统的影响进行了组合工况的仿真与排放试验研究。首先,本文通过气道稳流试验对六款进气道方案进行选型,探究了高流量系数与高滚流比气道方案对燃烧系统的影响。仿真结果发现:高滚流比气道促进了缸内高速有序滚流的快速形成,有利于油气均匀混合与火焰的快速传播,但其引导的高速滚流裹挟了大量燃油撞击排气侧缸壁,缸套累积的最大壁面燃油量达3.54 mg,远高于高流量系数气道的0.94 mg。基于活塞顶形状的组合工况评价研究中,仿真结果显示:排气侧平滑缓坡的活塞在额定点混合气均匀性、燃烧特性及燃油湿壁情况良好,两种工况下均有利于湍动能的提高;排气侧高背台阶的活塞在2000 r/min@0.2 MPa工况下混合气均匀性相对较好;排放试验结果发现:额定点高背台阶活塞燃烧系统CO、HC排放浓度比平滑缓坡活塞分别高38.4%和77.8%;而2000 r/min工况平滑缓坡活塞燃烧系统CO、HC排放浓度比高背台阶活塞分别高14.5%和34.2%。研究表明:随工况变化,活塞方案对滚流比、湍动能影响的优劣基本不变,但对混合气均匀性,火焰传播速度及CO、HC排放特性的优劣影响差别较大;这种高速大负荷与低速小负荷的组合工况更有利于综合评价活塞方案对燃烧系统的影响。不同喷油方向的油束方案与活塞顶形状的匹配研究发现:油束方案对滚流比的影响程度较小,远不及活塞顶方案;相比活塞顶形状,油束方案对缸套湿壁量影响较大,相比油束方案,活塞顶形状对活塞顶湿壁量影响较大。喷油开始时刻对燃烧系统的影响研究表明:2000 r/min@0.2 MPa工况下,喷油提前有利于较强滚流的形成;额定工况的喷油开始时刻存在最优值(420°CA),过早或过晚均会使燃油撞壁量增加;SOI_380~SOI_440的点火时刻当量比分布情况中,额定工况下随着喷油时刻的推迟而逐渐恶化,而2000 r/min@0.2 MPa工况下随着喷油时刻的推迟逐渐变好。对采用高流量系数进气道、平滑缓坡活塞与油束方案Spray 1的样机进行台架试验结果显示:样机动力性、燃油经济性与排放特性较原机得到了提升。
其他文献
本文采用CFD数值模拟软件FLUENT,建立了二维模型,对氢气/空气预混气在全填充多孔介质平板微小燃烧器内的燃烧过程进行了数值模拟。定义了多孔介质预热区、反应区、壁面预热区三个区域和回热效率、多孔介质和壁面在反应区的热损失效率。采用参数化的研究方法定量分析了多孔介质导热系数(ks)、孔隙率(ε)、壁面导热系数(kw)、当量比(Φ)、进口气体流速(Uin)等因素对燃烧温度(Tf)、多孔介质回热以及壁
GDI汽油机向小型强化方向发展,发动机在获得热效率提升的同时不可避免带来了爆震、排气温度过高等问题,并且为了满足严苛的排放标准,发动机常以牺牲燃油经济性为代价。发动机喷水技术在理论上具有抑制爆震,降低排气温度和NOX排放等优势,很大程度上迎合了未来发动机的需要。本课题围绕发动机进气道水喷射技术,基于一台4缸GDI汽油机,改装并设计了进气道喷水装置和控制系统,采用发动机试验与Python理论计算、一
内燃机作为移动装置中应用最为广泛的动力部件,其节能减排对国家经济和生态环境的可持续发展具有重要意义。由于内燃机排气具有温度高、能量大等特点,采用热力循环开展排气余热回收被公认为是最具节能潜力与效率提升的技术之一。烟气换热器作为热力循环中置换排气热量的关键部件,其换热性能直接影响循环整体效率,同时带来的排气背压上升和额外负重均会损耗内燃机原机功率。因此,本文针对移动装置内燃机余热回收系统中烟气换热器
能源与环境问题日趋严峻,对内燃机节能减排提出了更多的要求,其中内燃机余热回收是实现节能减排的关键技术手段。以CO2混合物为工质的动力循环可以较好的适应内燃机余热特性且能在一定程度上改善系统的冷凝问题,具有很好的应用前景。目前关于混合工质动力循环系统的研究大多集中于部件设计及系统的稳态计算,缺乏对其动态特性及控制策略的研究。然而,由于内燃机工况的频繁波动,系统常常在变工况下运行,所以研究系统的动态特
现代发动机采用更加紧凑和更大功率密度的设计,因此发动机的热负荷越来越大。同时,市场对于发动机的经济性和排放性的要求逐渐严苛,这也对冷却系统的温度控制与功耗优化提出更高的要求。传统的冷却系统存在诸多局限性,电控部件与电控技术在汽车领域的应用为冷却系统进一步发展提供了方向,使冷却系统从被动地控制温度转变为主动地管理能量,进而为提高冷却效果和整机效率提供了潜在的更好解决方案。先进智能冷却系统不仅能保证发
电子设备的小型化和性能提升迫切要求开发高效传热机构以将热量从器件传递到散热器。脉动或振荡热管是一种非常有前景的解决方案,它可以在热源和冷源之间以很小的温差传递大量的热量而无需任何外部能量。在过去几十年中,已经进行了大量的理论和实验研究以理解脉动热管的运行特征,提高脉动热管的传热性能也成为众多学者的研究目标。为解决实验研究存在的不足,本文提出了一种有壁厚三维脉动热管物理模型。采取数值模拟的方式对不同
柴油机颗粒物排放与缸内碳烟的氧化过程密切相关,而缸内碳烟颗粒物的内部氧化是碳烟氧化过程的重要组成。因此,开展碳烟内部氧化过程的研究是非常必要的。本文采用全气缸取样系统获得不同进气条件下柴油机缸内燃烧过程中的碳烟颗粒,使用透射电子显微镜、粒径谱仪、热重分析仪等仪器,分别测量分析碳烟样品的基本粒子粒径分布、纳观结构以及氧化活性,并将缸内燃烧的数值模拟与上述参数结合,以评价碳烟颗粒物内部氧化的倾向性。此
发动机采用二冲程工作方式具有功率密度大、结构简单的优点。液压自由活塞发动机以液压油作为能量输出介质,在循环过程中难以利用液压能下行回位,因此二冲程工作方式是一种适用于液压自由活塞发动机的工作方式。然而,对于二冲程发动机来说,长久以来面临的燃油消耗较大问题仍是限制二冲程发动机发展的主要因素。本文通过仿真和试验手段,研究了基于二冲程自由活塞发动机从采用气道喷射到半直喷喷射方式的混合气生成状况和发动机运
机动车等移动源的污染已成为大气污染的重要来源,柴油机微粒捕集器(DPF)是目前最有效的颗粒物减排后处理技术手段。柴油机微粒捕集器的传统陶瓷基壁流式滤芯应用广泛,但具有受冲击容易损坏破碎,加工困难,在高温热冲击下容易开裂等缺点。而金属泡沫拥有孔隙率高、渗透性好、比表面积较大、耐高温、易加工、抗冲击性能良好等优点,可降低排气背压,提高燃油经济性。然而,颗粒物在金属泡沫中的沉积特性及捕集效率等特点尚未得
目前全球能源短缺问题日益严重,内燃机作为石油最重要的消耗源之一,其能耗的降低对缓解能源危机与改善环境污染具有深远的意义。研究表明,内燃机工作时的有效功率输出不到燃料燃烧产生总热能的一半,大量的能量通过排气和缸套水以余热的形式散失而未得到有效利用。因此针对排气和缸套水进行余热回收对提升内燃机能效具有重要意义。在众多余热回收技术中,有机朗肯循环系统由于具有效率高、稳定性好以及适用范围广等特点被认为是一