论文部分内容阅读
本文主要研究几类重要的奇异积分算子在BMO空间、Campanato空间、BLO空间和Hpω空间等空间上的有界性.我们考虑的这几类算子在Lp空间上的有界性目前均已有十分广泛的研究.
本文共分七章,第一章简述了BMO空间、Campanato空间、BLO空间、加权空间和Hpω空间等空间的定义,给出了这些空间的基本性质以及本文的主要工作.
第二章,我们主要考虑一类参数Marcinkiewicz积分μΩρ、μΩ,λ*,λ和μpΩ,S在BMO空间和Campanato空间中的性质,其中ρ为复参数且核Ω属于L log+L(Sn-1)对于核函数Ω在一定的弱正则条件下,我们将要证明如果f属于BMO(Rn)空间或者属于某一Campanato空间,那么[μΩ,λ*,ρ(f)]2、[μρΩ,s(f)2以及[μρΩ(f)]2要么处处无限要么几乎处处有限,并且在后者的情况下,我们还建立了某种关于它们的有界性.
第三章,我们研究了极大奇异积分算子T*的BLO有界性,把Hu和Zhang的结果延拓到一般的情形.
第四章,我们讨论了带有变量核的分数次参数Marcinkiewicz积分μρΩ,α在对核函数Ω没有加任何光滑性假设条件下,我们将要证明μρΩ,α。是从L2n/n+2a(Rn)到L2(Rn)有界的.
第五章,在本章中,我们将考虑μΩb-,α。在Hardy型空间Hp/b(Rn)上的有界性,其中详见定义1.2.5.
第六章,在本章里,我们将要证明参数Marcinkiewicz积分算子μρΩ的Hρω-Lρω有界性,其中ω属于Muckenhoupt权类.
第七章,对于f∈Lr(Rn)∩BMO,Chen and Zhu在[56]中证明了如下的不等式‖f‖p≤Cn,p‖f‖rr/p‖f‖BMO,1-r/p,1≤r≤p∞在本章里,我们将要给出另外两个不等式,它们包含了Chen and Zhu[56]的结果.因此,我们也能得到如下的Kozono-Tauiuchi不等式([57])‖fg‖r≤Cn,r(‖fr‖g‖BMO+‖g‖r‖f‖BMO), 0r∞.