采用高速采样保持电路结构的InP ADC的研究与设计

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:zengquaner
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息技术的发展,模数转换器(ADC)的应用日益广泛。而在诸如雷达、超宽带通信系统、高性能数字示波器等产品中,模数转换器的速度性能通常是整个系统性能的瓶颈,因此高速ADC的研究备受重视。当前,高速ADC所采用的工艺一般可分为CMOS工艺与HBT工艺。与CMOS工艺相比,HBT工艺有着更快的电子迁移率、更好的器件匹配性能、更高的晶体管截止频率等优点,特别是In P HBT工艺,十分适合用于高速电路的设计。因此,本文将设计一款基于In P HBT工艺的ADC。在ADC架构的选择上,在对比当前几种主流高速ADC架构之后,最终选择采用折叠内插架构。折叠内插ADC可分为采样保持电路、粗量化模块与细量化模块等三个模块。其中,输入信号经过采样保持电路后,分为并行的两路信号到达粗量化模块与细量化模块,本文将对采样保持电路与粗量化模块的设计进行详细介绍。其中,高速采样保持电路是高速ADC中的重要模块,是保证整个ADC性能的关键。本文在分析几种常见的高速采样保持电路及对比优缺点之后,最终选择开环有源采样保持电路作为最终结构。本文详细介绍了采样保持电路中的非理想因素,并给出了相关应对措施。在具体电路设计时进行了详细的理论推导以及电路原理分析。关于粗量化模块的设计,根据粗细量化协同编码的要求,本文对整个粗量化模块电路进行了重新设计,详细介绍了系统层面的设计思路,并根据该思路给出了具体电路设计,最后用仿真进行了验证,证明符合设计要求。本文最终设计了一款采用折叠内插架构的In P ADC,其分辨率为8位,其中粗量化为3位,细量化为5位。ADC采样速率为6GSps,输入信号满摆幅为1.6V,输入信号带宽为500MHz。后仿真结果显示,在输入正弦信号频率为539MHz时,采样保持电路的有效位数(ENOB)可达8.43bit,信噪失真比(SNDR)为52.53d B,无杂散动态范围(SFDR)为54.90d B,满足设计要求。对于粗量化模块,最终的设计基本实现预期设想,且仿真结果显示基本实现粗细量化协同编码的功能。最终整体ADC在6GSps的采样速率与频率为539MHz的输入信号下,可实现有效位数为7.07bit,总版图的面积为5.82mm×5.27mm,在5V的电源电压下消耗的电流为2.6A。
其他文献
由于手机、卫星广播,GPS等先进的无线通信系统领域的快速发展,微波材料的研发引起广泛关注。性能优、成本低、小型化的微波电子元器件能够促进集成技术的发展。因此,本领域亟需综合性能优异的微波介质陶瓷。在本文的研究中,提出了烧结温度低、微波性能优异的BaO-V2O5基微波介质陶瓷。本文首先研究了满足LTCC(Low Temperature Co-fired Ceramic LTCC)应用的Ba2V2O7
航天电子设备的可靠性评估已成为近几年我国航天电子产品关键技术研究的新趋势和热点。电子电路系统作为航天电子设备的中枢,整个设备的可靠性评估核心是对电子电路系统的可靠性进行准确的评估。通过重要度分析确定系统的关键部位并找出薄弱环节是评估、提高电子电路系统可靠性的重要手段,是航天电子设备提高性能的基础方法。目前科技发达国家通过控制电子电路中的相关参数已实现整机可靠性和寿命的控制,而我国对复杂电子电路系统
航空业是公认的国家总体综合国力的一大标杆,在如今科技高速发展的背景下,保质保量的制造和加工出高精密的符合当前科技水平要求的航空业零件是个不小的挑战。在航空结构件加工过程中,刀具作为重要的终端部件,刀具磨损状态影响着加工的精度、效率及经济效益。因此,实现航空结构件加工过程中刀具磨损状态的实时在线监测具有重大意义,能够大大提高切削加工的生产效率和质量、降低生产成本。尽管关于刀具状态监测开展了大量研究工
航空发动机涡轮叶片在发动机运行时需要经受住高温、高压、高离心率、热应力、剧烈震动的影响,而在这种极端环境中,随着使用时间的累积,叶片很容易出现损坏失效,进而引起发动机的故障。所以为了减少故障产生造成的安全事故,需要准确且及时地监测工作状态下的涡轮发动机叶片等高温部件由于振动产生的应变。本文采用直流磁控溅射方法和电子束蒸发方法在Ni基高温合金基片上制备了多层结构/功能一体化的PdCr高温薄膜应变传感
叶片作为航空发动机关键部件对发动机性能起决定性作用。叶片大多由钛合金等难加工材料构成,在加工过程中要保证其复杂几何形状的叶片具有极高的表面质量和尺寸精度,是一项极具挑战性的任务。现有的制造工艺主要采用高精度铣削和砂轮或砂带磨削相结合的方法。但砂带磨抛钛合金叶片中存在加工质量难以保证,易发生烧伤,材料去除率不高等问题。针对以上问题在常规砂带磨抛中辅助加上超声振动,进而以提高材料去除率。首先通过对超声
随着物联网的不断发展,数据吞吐量急剧增加,系统对存储器性能的要求日益提高。基于低维功能材料的纳米器件可极大地缩小器件尺寸,进而提升存储密度。二维材料不仅在纵向上具有原子级尺寸,且具备良好的光电子特性,因此有望实现这一愿景。为探究新型二维材料在存储器件方面的应用潜力,本文从材料生长和器件制备两方面入手,开展了以下工作:1.通过物理气相沉积(Physical Vapour Deposition,PVD
随着大型计算机、人造卫星、移动基站、便携式电子设备、车载电子系统及医疗电子等的迅速发展,促进了微波介质陶瓷的发展;随着对电子器件和系统的高频化、高集成化、小型化、高可靠性、高性能及多功能等要求越来越高,低温共烧陶瓷(LTCC)技术由传统的高温烧结陶瓷(HTCC)发展而来,LTCC技术是实现这些需求的重要手段。LTCC具有介电常数多样化、介质损耗低及烧结温度低等特点,能与电阻率低的银共烧是其相对HT
本文以3-PRRU并联主轴头为研究对象,研究了该机构的运动学、静力学、静刚度、动态特性和铣削稳定性,在基于3-PRRU并联主轴头的五轴混联机床上开展实验,验证了相关理论的正确性。对3-PRRU并联主轴头的运动学、静力学进行分析,研究得到了该并联机构的运动学求解和各铰链内力。为进行运动学分析,简化支链中各部件,通过各运动支链的矢量环建立运动方程和约束方程,进而得到运动学求解。建立各支链的杆件和动平台
本博士论文研究的主要内容为丛代数间的态射(根丛同态)和2-Calabi-Yau三角范畴中的丛结构。特别地,研究了丛代数到其自身的保持丛突变的双射(丛自同构),以及这些双射构成的群,即丛自同构群。我们在第一章和第二章分别叙述引言和列出一些预备知识。第三章将研究根丛代数以及根丛同态[1]。我们将给出一个非理想丛态射的例子,该反例澄清了[1]中的一个疑问。然后对一个种子引入冰化的概念,以此证明单的根丛同
强相互作用物质的相结构和对称性对研究QCD理论、发展其处理方法、探索强相互作用下的物质形态具有重要意义。其中同位旋物质因其丰富的相结构而受到广泛的关注,在自然界中人们猜测其可能存在于致密星体内部,在实验中可在中低能重离子碰撞中产生。在理论上,可以通过格点QCD模拟以及各种有效模型计算进行研究。本文用QCD有效模型Nambu–Jona-Lasinio模型研究有限温度有限同位旋化学势下强相互作用系统的