张量问题的若干研究

来源 :福建师范大学 | 被引量 : 0次 | 上传用户:vensen_guo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
张量问题在科学研究以及工程技术的许多领域中有着广泛的应用,研究其理论与数值算法是当前计算数学的热点问题.本文基于现有的研究成果,对张量绝对值方程和张量分裂问题进行详细地理论分析和算法研究.本文主要内容如下:第1章,主要总结了张量绝对值方程和张量分裂问题的研究概况,以及国内外张量问题的研究概况.除此之外,还引入了本文所需要的一些基本知识.本文从数值计算的角度出发,结合数值代数以及优化方法,主要是Levenberg-Marquardt(LM)方法,对包括张量绝对值方程和张量分裂问题的算法进行研究,并证明了所设计的算法的收敛性,同时通过数值实验验证了所提算法的有效性.第2章,首先通过引入互补函数将张量绝对值方程重新构造为张量互补问题,并分析了它的关键性质.针对构造的张量互补问题,设计了自适应非精确Levenberg-Marquardt(LM)算法,并证明了算法在一定条件下具有全局超线性收敛性.其次,提出基于连续时间的神经网络算法(CTNN)来求解一类张量绝对值方程(A-I是强M张量),后续进行了数值实验,并报告了实验结果.最后通过实验结果可以看到CTNN算法在求解一类张量绝对值方程上效果更好.第3章,在基于第2章理论研究的基础上,将张量绝对值方程重新构造为张量互补问题后需要求解方程系统H(x)=0,其本质上是非线性方程,基于目前非线性方程的求解方法,提出了加速的两步非精确LM算法,并提出利用上一步迭代和当前迭代中函数值的适当凸组合,得到非精确两步LM算法求解张量绝对值方程.从数值实验中可看到本章提出的算法需要更多的迭代次数,但是其单次迭代的时间复杂度较低,因此总体上加速的两步非精确LM算法的效率有一定的提升.第4章,首先介绍了投影的初步知识和性质.通过引入基于张量分裂问题的投影函数,将张量分裂问题(TSFP)转化为约束优化问题,并分析了其关键性质,在此基础上设计了求解张量分裂问题的Levenberg-Marquardt(LM)类算法,接着进一步提出修正的信赖域LM方法(简记MLM),并证明了所提算法的收敛性.最后进行了一些数值实验,并报告了结果,从实验数据中可看到算法MLM实验效果更好.第5章,对本文的研究工作做了总结,并提出了未来研究工作的设想和亟待解决的问题.
其他文献
本学位论文定义一类新的李代数--广义随机李代数,并研究它的结构.我们研究其结构的方法主要通过它上面的线性变换来研究的,这些线性变换包括导子,李三导子,保持交换性的可逆映射,积零导子等.本文决定出这些变换的具体形式.全文分为四章,每章具体内容如下:第一章介绍一些准备知识,主要是李代数的基本概念和结构,以及广义随机李代数的定义及其空间分解.第二章研究了广义随机李代数的导子和李三导子.首先通过导子对广义
近年来,拓扑电子材料家族由于新奇的物理性质及其在自旋电子器件中巨大的潜在应用价值而受到了人们的广泛关注。拓扑电子材料是指一类具有非平庸拓扑性质的材料,根据不同的物态、电子结构、对称性等特征还可以对其进行进一步的分类,如Z2拓扑绝缘体、拓扑晶体绝缘体、外尔半金属、狄拉克半金属、拓扑超导体等等。而在对拓扑材料领域的探寻中,计算物理发挥了至关重要的作用,物理学家们通过第一性原理计算方法理论预言并指导实验
二十世纪初,芬兰数学家R.Nevanlinna为亚纯函数值分布的研究创立了值分布理论,这不仅在亚纯函数值分布研究史上有着里程碑式的意义,而且也成为了研究复分析所不可或缺的工具.本论文主要利用Nevanlinna理论研究了广义Selberg类L-函数的值分布和Fermat型复微分差分方程的解.论文分为五章,具体结构安排如下:第一章简单介绍Nevanlinna理论的常用符号,亚纯函数唯一性理论,Sel
本文考虑如下问题:其中Ω(?)RN(N≥5)是有光滑边界(?)Ω的有界区域,Δ2为双调和算子,λ是常数.假设λk是Δ2在上述边界条件的第k个特征值.本文分为四个部分:在第一章中,我们给出了一些命题和定义以便后续使用.在第二章中,我们讨论了当λ小于或等于λ1时,方程解的存在性.利用变分方法,证明了方程在这两种情况下都存在一个非平凡弱解.在第三章中,我们讨论了当λ属于区间(λk,λk+1)时,方程的多
1925年,著名芬兰数学家R.Nevanlinna创立亚纯函数值分布理论,是近代函数论最重要的理论之一,其中著名的Nevanlinna第一基本定理和第二基本定理对复分析发展做出重大贡献.近百年来,亚纯函数值分布论都是以Nevanlinna理论为基础不断蓬勃发展,尤其是亚纯函数唯一性问题的研究成为了复分析研究领域的热门课题.在亚纯函数唯一性理论中,有穷下级亚纯函数是数学工作者研究的重点对象之一.本文
李代数的结构问题是代数研究中的一个重要内容.2018年,Caalim J等人引入并研究了一类由S-酉矩阵产生的李代数.设Mm(C)表示复数域C上全体m阶方阵组成的全矩阵代数,S∈Mm(C),则集合uS={A ∈ Mm(C)|SA*=-AS}为实数域R上的李代数,其李运算为[X,Y]=XY-YX,对任意的X,Y∈uS.本学位论文研究了当上述S为酉矩阵时R-李代数uS的几个结构问题,包括导子、双导子、
张量在信号处理、图像处理、非线性优化、高阶统计学、数据挖掘等领域有着广泛应用.科学与工程计算中的许多问题都可以表示成张量-向量积的形式,称之为张量方程.张量方程可以看成是矩阵方程=(7的一种自然推广,其在科学计算与工程应用方面扮演着重要角色,如何有效求解张量方程有着深刻的理论实际意义.本文基于现有的研究成果,对Hankel张量方程和强张量绝对值方程进行详细的理论分析和算法研究,并证明了这些算法的收
本文主要考虑在Navier边界条件:u|(?)Ω=△u|(?)Ω=0下带约束的双调和方程(?)多解的存在性.其中Ω是RN(N>4)的一个具有光滑边界的有界区域.本文主要分为两个部分,第一部分通过变分方法,我们在对f作某些适当假设的情况下证明上述问题存在两个解,一个正解一个负解,并且利用下降流的方法证明存在第三个变号解;第二部分我们对f作了稍强的假设,通过对偶锥分解,证明了上述问题同样存在三个解,正
在编码理论中,计算码的重量分布是一项值得研究的工作.当我们对一个编码计算其重量分布后,就基本上了解了这个编码的结构,进一步地,码的最小码重又密切关系着编码的纠错能力,因此码的重量分布计算一直吸引着编码理论研究者的研究兴趣.特别地,二元循环码又是具有理论和实际应用价值的非常重要的一类线性码,本文主要研究二元循环码的重量分布.一般情形下确定的循环码的重量分布是非常困难的.本文的研究工作主要是在2模pm
本硕士论文通过变分方法讨论了一类带有不定权函数的薛定谔方程正解的存在性和多解性以及一类带有p-Laplacian算子的超线性椭圆方程基态解的存在性。用到的定理和方法包括:集中紧性原理、山路定理、Nehari流形等。本文分为以下五个部分:绪论主要介绍所研究问题的背景和已有结果,以及本文的主要工作。第一章主要介绍一些本文涉及的基本知识,包括一些重要的不等式,基本定义,以及必要的引理和定理。第二章考虑如