模糊矩阵幂序列的收敛性

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:gu22540
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文研究的主要内容是模糊矩阵幂序列的收敛性,这部分内容是模糊控制理论界较为关注的问题.因为模糊控制的对象是模糊系统,而对一个模糊系统进行模糊控制的主要目的是使其达到预期的效果,其中一个重要的方面是使系统在有限的时间内达到稳定状态.而模糊系统是用一个与输入、输出及控制项有关的模糊关系矩阵来描述的.所以,研究模糊系统的稳定性关键之一在于研究模糊关系矩阵的幂序列的收敛性.该文共分三章,分别从不同方面对模糊矩阵幂序列的收敛性进行了研究,即,对于不同的t-模,研究了模糊矩阵幂序列基于max-t模复合意义下的收敛性.第一章是预备知识,介绍了有关模糊矩阵、三角模、模糊矩阵间的运算、模糊矩阵幂序列的收敛与振荡、模糊矩阵幂序列的图论表示等概念.第二章主要讨论了模糊矩阵在max-product复合意义下的收敛性及其收敛性的分类情况.在第三章中,首先,应用product与Zero t-模的相似性:a T a
其他文献
利用特征标维数图刻画群的结构是受到广泛关注的群表示论中的重要研究课题.1985年以来出现了一系列研究成果,如文[5],[9],[14],[15],[16],[17],[18],[24].在文[10]中Mark L.L
该文主要利用Fucik谱的知识,采用连续同伦延拓的方法研究二阶微分方程解的存在性问题.全文分成两部分.第一部分讨论渐近线性正齐次方程Dilichlet边值问题,它属于函数两个方向
该论文由四部分组成.第一部分是对该论文所涉及的问题的背景、进展以及所得结果的一个综述.第二部分我们给出了该论文所涉及的基本概念,研究了图的改变与谱矩序列排列之间的
有禁排列在过去的十几年中被广泛地研究,它和组合计数中的一些经典序列有密切关系.1972年Hammersley给出了S(321)的计数,1973年Knuth给出了S(231)的计数.1993年Gire发现S(321
布尔矩阵的指数理论已经得到了广泛的研究.该文研究布尔矩阵的三种类型的广义指数.我们着重研究第三种类型的广义本原指数和一般布尔矩阵的第一种类型的广义幂敛指数.对第三
1995年,Georgia Benkart等构造了Borcherds超代数的量子化包络代数.1998年,Jin Hong构造了Borcherds超代数的量子化包络代上的一个非退化对称双线性型.后来人们在研究Ringel-