增程式混合动力汽车工况预测能量管理策略研究

来源 :吉林大学 | 被引量 : 0次 | 上传用户:boycant
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
面对日益严格的油耗限制与排放法规,兼具传统汽车与新能源汽车优点的混合动力汽车成为当下的最优选择。作为混合动力汽车中能量混合度最高、传动系统最简洁的一种,增程式混合动力汽车(Range Extend Hybrid Electric Vehicles,简称REEV)成为当下研究的热点。然而现有混合动力汽车实际节能减排效果与设计的能量管理策略差异较大,如果能够进行汽车未来行驶工况的预测进而改善控制策略,可以有效的提高整车的经济性。本文以某一紧凑型传统燃油车为研究对象,完成了增程式混合动力系统开发,进行了工况预测能量管理策略的设计及优化问题研究,并搭建了整车联合仿真分析平台和台架试验平台,对所提出的控制策略进行验证,具体研究内容如下:首先,在分析混合动力汽车的构型、REEV工作模式与能量流的基础上,针对目标车型性能需求,按不同工作模式下的三个设计层级分别对动力总成各部件进行了选型与参数匹配,包括驱动电机类型和峰值功率、动力电池单体类型与串并联形式、减速器类型与传动比、发电机类型和持续功率、发动机排量与油耗等。而后,使用LMS AMESim和MATLAB/Simulink软件完成了REEV前向联合仿真分析平台的搭建,利用理论建模与实际建模相结合的方法,分别建立了部件仿真方面的驱动电机模型、动力电池模型、减速器模型、发动机模型,整车仿真方面的驾驶员模型、车辆纵向动力学模型、整车控制系统模型,为后续研究做好铺垫。第三,选用车辆追踪法采集了实车行驶数据,结合单目摄像头与计算机视觉成熟的算法基础,完成了视野内车辆数检测与前方跟车车距的估计,构建了含行车环境信息与坡度信息的实车循环工况并分别与全部行驶数据、典型工况NEDC、典型工况UDDS进行了对比。对所构建的实车循环工况分别利用BP神经网络和模糊逻辑控制,完成了道路工况的辨识和驾驶员意图识别。结果表明:结合了环境信息后,道路工况辨识结果精确度高于传统辨识方法,驾驶员意图识别预测性好于传统识别方法。最后,分别建立了电池充、放电时的等效燃油最小(Equivalent Consumption Minimization Strategy,简称ECMS)控制策略,按辨识的不同道路工况设定了模型中等效因子与制动能量回收平均功率数值。针对预测得到的道路工况与驾驶员意图辨识结果,分别建立了SOC门限与整车需求功率的预测控制策略并进行仿真与试验验证分析。结果表明:所搭建的控制策略相较于定点功率跟随控制策略百公里等效油耗有所降低,整车经济性得到了提高。本文的研究对于增程式混合动力汽车系统的选型开发、工况预测控制和能量管理策略开发具有一定的参考价值,对于增程式混合动力汽车的推广应用具有积极的意义。
其他文献
目的:观察宣通汤联合阿昔洛韦治疗面神经炎的临床效果。方法:选取2020年1月—2021年4月我院收治的40例面神经炎患者作为研究对象,采用随机数表法分为参照组和宣通汤组,每组20例。参照组采用阿昔洛韦治疗,宣通汤组则采用宣通汤联合阿昔洛韦,观察对比两组的临床治疗效果。结果:宣通汤组的总有效率(95.00%,19/20)高于参照组(70.00%,14/20),差异具有统计学意义(P<0.05)。结论
智能汽车行人避撞系统是一种基于智能传感信息的旨在避免或减轻车辆对于行人伤害的高级驾驶辅助系统(Advanced Driving Assistance System,ADAS)。传统道路测试对于复杂工况难以复现,相机在环测试可以通过嵌入真实的相机硬件和构建虚拟场景弥补这种不足。因此搭建相机在环测试平台对相机成像影响因素进行深入研究,并以此为基础构建虚拟测试场景,探寻加速测试方法,对基于视觉信息的智能
玄武岩纤维增强复合材料是一种很有前途的新型复合材料,具有高强度、高模量、断裂韧性高、耐腐蚀性和阻燃性等特点,在航空航天和汽车应用中具有很大的潜力。编织纤维结构可以改善纤维复合材料层间和层内强度,提高纤维复合材料的抗分层能力。纤维复合材料在受到动态载荷时,会存在明显的应变率效应。由于复合材料之间性能存在差异,因此其对应变率敏感程度也各不相同。针对复合材料的低速冲击仿真,使用的参数大多是材料的准静态性
随着科技的进步,汽车行业提出了电动汽车、轻型汽车、智能网联汽车的发展趋势,而汽车车身上传统的电磁执行器质量大、体积大、噪声大等缺点日益凸显,与新时代汽车的发展理念相悖。形状记忆合金是一种新型材料,而以形状记忆合金材料作为执行元件的执行器具备结构小巧、无冲击噪声、无电磁干扰等优点,可以用来替代汽车上的传统电磁执行器从而改善上述缺点,具备着着良好的发展前景。形状记忆合金由于独特的材料成分,使其相比于普
二十一世纪的今天,汽车已经融入到了人们的日常生活中,成了不可或缺的交通工具。作为车辆和行驶路面接触的唯一部件,轮胎的性能决定着整车的性能表现,当轮胎充气压力不足时,会导致车辆行驶阻力增大,油耗升高,甚至导致爆胎,对驾乘人员的人身安全产生极大威胁。因此,实时监测轮胎压力状态,在胎压状态发生异常时警示驾驶员,对提高驾乘安全性和行驶经济性有重要意义。胎压监测系统(TPMS)正是为了解决上述问题而生的,它
燃料电池汽车相比于传统燃油汽车、纯电动汽车,具有无污染、零排放、燃料加注时间短、续驶里程长等优势,具有良好的应用前景。当前燃料电池系统的动态响应较慢,启动时间较长,在汽车起步、急加速、高速、爬坡等工况下对整车的性能有较大影响,从而影响驾驶员的驾驶感受,即影响驾驶性。因此研究驾驶性建模与仿真方法是燃料电池汽车集成匹配方法研究的重要内容。经调研,对燃料电池汽车整车性能的研究大多集中在动力性、经济性的建
随着智能交通体系的不断发展,现代社会对交通的功能和效率提出了越来越高的要求。然而,由于交通环境的复杂多变性,参与者的行为意图的不可控性等原因,合理的规划交通,实现车辆的全自动驾驶必然随之成为一个难点。现代交通对于经济发展,社会进步的重要性不言而喻,因此世界范围的广泛学者对自动驾驶问题展开了深入研究,他们的科学探索也获得了资金和社会各界人士的支持。为了解决这一难题,科研学者提出了多种控制策略,大体上
轨迹跟踪和轨迹规划是车辆智能化的重要研究领域,本文以四轮独立驱动电动车作为控制目标,通过直接控制车辆的前轮转角和四轮的驱动/制动力矩,结合多自由度车辆模型,复杂轮胎模型和人工势场模型以及模型预测控制,线性二次型调节器和二次规划理论,实现车辆基于高速场景下超车行为的局部轨迹规划和轨迹跟踪控制,具体内容包括以下几个部分。分别针对局部轨迹规划和轨迹跟踪控制,建立了线性单轨车辆动力学模型和非线性七自由度的
随着现代社会的发展,汽车保有量持续增加,汽车噪声对人们的生活及环境产生了极大的干扰,且汽车车内噪声对驾乘人员的舒适性存在很大的影响。聚氨酯多孔材料作为汽车降噪材料之一,可用于降低车内噪声,提高车内环境质量。石油资源的枯竭以及环保意识的加强,使寻找聚氨酯主要原料之一-石油多元醇的替代品具有重大意义。另外,生物基聚氨酯多孔材料声学性能与传统石油基聚氨酯相比,并没有太大的优势。因此通过改变聚氨酯外观结构
随着汽车电动化、智能化的发展,更人性化、考虑行人等弱势群体的更加全面的汽车安全性能逐渐被人们所关注。近年来,随着汽车安全性法规的出台,驾驶员和乘员在交通事故中的生存概率、受伤害程度得到普遍改善。相比之下,汽车的行人安全技术却发展较慢,人与车碰撞事故已成为全世界相关研究人员共同关注的问题。减少以及避免行人在碰撞事故中受到伤害,除了推出碰撞安全法规,还有开发主动和被动安全的新技术。目前行人保护的主流技