某SUV前副车架振动疲劳性能研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:hubai123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
前副车架作为承接簧载质量和连接悬架系统的重要承力部件,在随机交变振动载荷下易发生疲劳失效。前副车架固有频率较低,在一些高频随机路面,频谱范围接近前副车架低阶固有频率,因此需要考虑共振疲劳问题。而当前针前副车架的疲劳损伤分析多采用时域法,在解决动力响应问题特别是共振疲劳问题时并不适用。时域分析法基于线性叠加原理处理复杂多向载荷激励,不考虑载荷间相互作用对疲劳损伤的影响。因此本文以某SUV前副车架为研究对象,基于试验场耐久性道路试验数据,进行频域疲劳损伤分析,并与时域疲劳分析对比,研究载荷谱特征变化效应和载荷间相互作用叠加效应对前副车架疲劳性能的影响。首先阐述前副车架疲劳损伤分析基本原理。从受载系统和加载形式角度,分析前副车架的载荷获取与处理方法。为准确表述前副车架材料的疲劳性能,讨论了表征材料抗疲劳特性的S-N曲线,并论述了平均应力修正法,以考虑平均应力对构件疲劳的叠加效果,同时引入线性疲劳累积损伤准则计算构件弹性变形阶段的疲劳损伤。设计并开展了试验场强化路耐久性试验,并测取了试验场工况路谱和车辆动力学响应信息。通过实车底盘拆解测量、关键零部件模态验证并柔性化,建立整车刚柔耦合多体动力学模型,并采用悬架K&C测试、实车台架振动试验分别进行模型静态校验和动态校准。通过虚拟迭代和轮心加载法仿真获取了前副车架连接点载荷谱。在前副车架时域疲劳分析中,根据路谱频率范围达到前副车架固有频率的1/3,需要考虑动力响应。应用疲劳分析软件n Code,采用模态叠加法和线性累积损伤准则,结合经过修正的前副车架S-N曲线,获取了前副车架各节点应变时间历程信息,并与监测点应变信号对比显示RMS值相近,但通过将数据进行雨流统计处理发现仿真较实测信号对应的疲劳损伤较小。零部件设计应遵循安全性、可靠性原则,说明基于该前副车架的时域疲劳分析法存在一定的局限性。对比高频随机路面车速20km/h、30km/h、50km/h工况下前副车架与下摆臂连接点垂向加速度PSD频谱特征,发现车速增加引起频谱峰值向高频移动、峰值升高,且高频出现较大峰值。为求得前副车架应力频响函数,进行了单位加速度激励下的模态频响有限元分析。根据应力频响函数特征参数采用Dirlik宽带法统计应力响应PDF,结合构件S-N曲线和线性疲劳累积损伤准则,分析了试验场强化路20km/h和标准车速下前副车架的疲劳累积损伤。结果表明,车速为20km/h时,载荷不易激起结构共振,时域分析与频域分析结果相近;较高车速(标准车速)时,频域分析损伤值普遍高于时域分析结果,车速提高引起载荷频谱峰值向高频移动,激发前副车架低阶模态,并产生共振疲劳,反映了载荷谱特征变化效应。不同车速工况下前副车架的频域疲劳损伤均大于时域分析结果,反映了载荷间相互作用叠加效应。经过时频方法对比表明,频域疲劳分析可以对该型前副车架进行疲劳损伤分析安全系数更高,可较直观分析结构薄弱区域便于对产品进行可靠性优化设计。
其他文献
随着汽车工业的发展,采用线控制动的分布式驱动电动汽车成为车辆构型的趋势。此构型车辆的制动系统是由高度电气化的电子机械制动系统及轮毂电机再生制动系统组成,发生制动故障的可能性较高,同时该构型车辆在制动方面有较好的容错潜力,因此研究线控制动的分布式电动汽车制动执行器失效后的稳定性补偿控制有重大意义。本文主要开展如下研究:(1)根据分布式电动汽车制动系统构型,建立电子机械制动系统模型、轮毂电机再生制动系
模态分析是对汽车NVH性能进行研究的重要手段,悬架零件作为重要的支撑部件,保障了车辆的安全性和舒适性,对悬架零部件进行模态分析的关键点在于如何求解模态参数,传统的模态参数识别技术往往是基于系统的输入和输出已知的情况下来求出模态参数。在一些特定的场景下,比如汽车运行工况,此时的输入参数难以测得,传统的模态识别手段不易于求解此类问题。针对于如何仅根据输出来识别模态参数这一问题,本文围绕基于盲源分离算法
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,同时也会使车辆制动力发生衰减与丧失,不利车辆安全行驶。为了解决此问题,本文通过截断异侧对应电机输出的制动力矩后,提出了一种基于电动助力液压制动系统的制动液压力
目前国内外沥青路面的设计方法均是使用层间完全连续接触的层状线弹性体系理论,然而基于这种方法对沥青路面结构进行设计计算,一方面难以反映沥青混合料的蠕变、松弛等粘弹性行为;另一方面,沥青路面结构的层间接触并非完全连续,因此会造成路面结构力学性能计算结果与路面实际运行状态存在差异。针对以上问题,为进一步完善沥青路面结构设计计算理论,本文基于解析的方法开展了层间非完全连续沥青路面动力响应问题的研究,具体内
载荷谱外推是载荷谱编制的重要步骤,即将由短时载荷谱根据分布规律扩展为全寿命域。载荷谱概率密度估计是载荷谱外推的关键环节,采用不同方案估计载荷谱概率密度的精确度存在差别。针对传统核密度估计的边界偏差问题,将扩散核密度估计法引入载荷谱外推过程中。基于此,本文以车辆后副车架为研究对象,采用参数外推方法、非参数外推方法和扩散核密度估计方法,进行载荷谱外推,计算疲劳损伤;从拟合效果图、拟合优先度、外推载荷谱
大跨度斜拉桥凭借着良好的跨越能力、抗风性能及经济指标,已成为铁路桥梁的主要桥型之一,并在物资流通、人员出行和抢险救灾中扮演着重要角色。为了减小地震下的内力响应和抵抗温度变形,大跨度斜拉桥常采用半飘浮或飘浮的隔震体系。但由于纵桥向缺少有效约束,在偶发地震荷载和常遇列车制动力作用下容易产生较大的结构响应。本文针对半飘浮体系斜拉桥的动力特性及在地震和列车制动力激励下的响应特点,提出了一种控制结构纵向振动
振动碾压是路堤施工中的重要技术方法,然而振动碾压机械与路堤填土之间的相互作用机制研究仍不太成熟,同时乡村公路振动碾压施工对周边低矮建筑结构的影响评估有待加强重视。基于以上考虑,采用室内模型试验、数值模拟和理论推导相结合的综合方法,对上述关键技术问题展开研究。分别开展了小比例尺室内模型试验和扫描电镜试验,从宏、细观两个角度揭示振动碾压-路堤填土相互作用机制。以不同轮重和压实遍数为关键因素,以路堤土沉
随着我国城市化建设的深入推进,独柱墩曲线梁桥凭借可以适应各种复杂的地形地貌的优势,被大量的应用于城市主体交通体系与市域快速路网的建设中。但由于“弯扭耦合”效应在曲线梁桥的使用稳定性方面影响较为突显,近年来,国内外相继报道了多起因车辆偏载作用而导致桥梁结构发生倾覆或坍塌的事故。因此,亟需从解决曲线梁桥倾覆事故的角度去分析曲线梁桥的稳定性。曲线梁桥在地震荷载作用下的特点也需深入研究,以防止协同效应造成
管片运输车是一种专门用于隧道施工的工程车辆,主要用于完成预制管片的运输。运输方式可分为有轨运输和无轨运输两种,无轨运输即胶轮式管片运输车。有轨运输效率低且成本较高,而胶轮式管片运输车具有可靠性高、操作安全等特点。因此,胶轮式管片运输车发展空间广阔,常规的工程运输车辆的轮胎在弧形面上正常行驶时,只有轮胎的最外沿与地面接触,增加了轮胎的压力,容易造成车辆爆胎的情况。本课题根据客户的实际需要,设计了一种
列车在高速行驶的过程中进行制动时,车轮踏面和闸瓦会发生接触,并进行剧烈的滑动摩擦。车轮踏面和闸瓦表面均存在着微米量级的粗糙度,故在实际的列车制动过程中只有少量微凸体发生接触,真实接触面积远小于名义接触面积,这就使得少量微凸体承受较大的接触载荷,应力的集中使材料局部温度过高出现“闪温”点,进而导致车轮材料物理机械性能变差,车轮表面硬度和摩擦学性能降低,车轮踏面磨耗增加。从介观尺度对滑动摩擦过程中的接