注水井测控通信系统设计与实现

来源 :燕山大学 | 被引量 : 0次 | 上传用户:jeff1986928
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
石油作为当今世界工业第一能源要素,被称为“工业的血液”。石油资源关系到国家能源安全,对社会发展起着至关重要的作用。我国正处于经济发展期,对石油的需求量与日俱增,但是我国石油储量有限,许多老油田已全面进入开发中后期,开发难度增大,需要完善开采技术来挖掘剩余油潜力。注水是补充油田能量的重要技术手段,为解决油田开发后期测调工作量大、注水合格率下降快等问题,发展了智能分层注水工艺。基于智能分层注水工艺现状,本文设计了一款注水井测控通信系统,以单片机作为井下配水终端机主控单元,控制传感器采集井下注水参数,以地面上位机控制中心为显示和存储单元,通过电力线载波的方式实现井下终端机和地面上位机控制中心之间的双向通信,实现对井下注水参数的实时监测和注水量控制。首先,根据系统功能需求对系统进行整体方案设计,并根据系统性能需求对各功能模块进行合理选型,确定数据采集方案、高温电源模块供电方案和电力线载波通信方案。其次,对系统硬件和软件进行设计。设计数据采集电路、电机控制电路和电源模块电路,通过专业软件对电源电路进行仿真,绘制电路原理图和PCB图,手工焊接电路板。设计嵌入式程序和上位机软件,自定义上位机和下位机通信数据包协议,对各功能模块分别进行调试。最后,对系统进行整体功能测试和高温可靠性测试。搭建注水井测控通信系统原型测试平台,系统实现了注水参数采集、电机控制、上位机显示、存储注水参数以及上下位机双向通信等功能,经模拟电缆测试系统通信距离6km。对单片机高温存储、高温工作、主控电路整体高温工作可靠性进行测试,结果表明单片机在250℃下存储210分钟,Flash数据保持正常,在100℃下工作180分钟,Flash数据保持正常,主控电路在100℃下工作270分钟,各模块功能正常,说明系统有较好的高温可靠性。
其他文献
星载P波段合成孔径雷达(Synthetic Aperture Radar,SAR)具有较强的穿透性且对生物量敏感,因而此波段成为探测地表、植被等隐藏目标的有效手段。然而,由于P波段的SAR信号受到背景电离层色散特性和电离层不规则体随机起伏特性的影响,因此雷达图像散焦严重。在雷达成像中,如果在硬件上提高雷达图像分辨率,会增加生产成本,因此从成像算法的角度提高图像质量成为最合理的方法。本文旨在利用深度
关于移动机器人的研究始终绕不开导航控制,目前有很多优秀的算法应用于机器人导航,取得了众多成果,但这些算法大多依赖环境地图或者局限于理论方面。因此本文的目的在于设计一个不依赖环境地图的端到端导航模型,并提高机器人的实际应用能力,主要研究内容如下:首先,概述课题研究意义和背景,简单介绍了几种传统导航算法原理和局限性,重点分析了强化学习导航原理和应用现状,根据不同的算法方案分析了强化学习在导航领域存在的
在神经科学和生物医学信息处理领域,锋电位分类是从细胞外采集的信号中提取单个神经元放电信息的关键步骤。锋电位是神经元细胞膜上快速且短暂的电位变化,是大脑中神经元进行信息传递的主要途径。尽管目前已存在许多锋电位分类方法,但在准确性和鲁棒性方面仍有待提高。因此,本文提出了基于深度学习的锋电位分类方法,以更有效地实现锋电位分类,对于研究大脑的工作机制具有重要意义。首先,提出了一种基于一维卷积神经网络(CN
光纤传感器由于其体积小、不受电磁干扰、环境适应性强等特点,被广泛应用于压力测量。本文基于游标(Vernier)效应和保偏光子晶体光纤的Sagnac干涉特性,提出了一种利用F-P腔增敏的分离型压力传感结构,并将传统Sagnac干涉环改良成了直线型,使传感器具有更简单的结构。该传感系统为全光纤结构,具有在高压环境中工作的潜力。论文的主要内容如下:首先,对比了几种光纤压力传感器的优缺点,分析了Sagna
压缩感知提供了一种新型信息处理方式,它充分利用信号的稀疏性,以远低于Nyquist的采样率进行随机采样以获取离散样本,然后通过重构算法实现对原始信号的良好恢复。压缩感知主要包括三个方面的内容,其中重构算法的设计是压缩感知成功恢复信号的关键。近似消息传递算法的特点是计算复杂度低,重构精度高,是一种高效的重构算法。该文应用近似消息传递算法对图像进行压缩感知重构,具体工作如下:首先,针对基于K-mean
随着我国逐渐步入老龄化社会,心血管疾病患者持续增加,使得心脏监护系统需求也在不断提高。如何利用计算机辅助技术对心律失常进行精准检测和分类是心血管疾病诊断中的研究热点之一。在进行心律失常识别时,传统上是心脏病专家依据患者的心电图来进行观察和分析,这样的方式容易产生漏检和客观性的结论,因此本文考虑采用机器学习和深度学习分类算法,对心律失常进行了以下研究:首先,针对在单个心跳的患者内的心律失常分类问题,
随着我国经济和信息科技的发展,汽车的普及率大大提高,然而另一方面各种交通事故也随之而来。为了应对交通事故的频繁发生,高级驾驶辅助系统(TSR)便应运而生,它可以帮助驾驶员做出正确的驾驶操作,从而有效地避免交通事故的发生。在TSR中,对交通标志的准确识别是一个核心问题,具有重大研究意义。为了进一步提高交通标志识别的准确率和计算效率,本文的主要工作如下:首先,为了解决交通标志识别算法中GTSRB数据集
小目标检测是目标检测任务中一个具有挑战性的分支,其目的是对图像中的小像素目标进行分类和定位。随着深度学习的发展,基于卷积神经网络的小目标检测算法取得了巨大的进步,但由于检测的环境复杂、信息量少以及分辨率低等问题,小目标检测算法还有待发展。该文围绕基于深度学习的小目标检测算法进行分析和研究,具体研究内容如下:首先,为了提升小目标检测的性能,该文提出基于金字塔卷积与注意力机制的小目标检测方法。该方法将
文本生成图像问题是图像生成方向的一个重要分支,给定一个文本描述,可以生成符合文本描述的图像。文本生成图像的方法主要是基于生成对抗网络的,目前的一些方法经常出现模式崩塌问题,生成的结果缺乏多样性。本文为了提高生成图像的质量做了以下工作:首先,为了解决训练过程比较自由缺乏约束的问题,本文提出了语义分类器生成对抗网络。将文本预处理后得到文本向量,与随机噪声连接在一起输入到生成器中,通过卷积层生成图像。然
双线性广义近似消息传递算法是广义近似消息传递算法的拓展,是一种具有高性能的迭代阈值算法。本文主要就双线性广义近似消息传递算法的研究及其应用进行了以下几方面的研究工作:首先,研究了一种基于双线性广义近似消息传递低秩矩阵填充的图像去噪算法。该算法利用自然图像中非局部相似块形成的矩阵具有低秩性这一性质,将匹配图像块的去噪问题转化为低秩矩阵填充问题。实验结果表明,该算法能够有效去除图像中的混合噪声,与经典