采用表面阵列电极的功能电刺激仿真与优化设计

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:muniao090908
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
功能性电刺激(Functional Electrical Stimulation, FES)是一种使用电流激活由于脊髓损伤(Spinal Cord Injury, SCI),头部外伤,中风和其他神经系统疾病导致的瘫痪肢体所影响的神经纤维的物理治疗技术。FES主要帮助残疾人士恢复一定的生理功能。它有时被称为“神经肌肉电刺激(Neuromuscular Electrical Stimulation, NMES)。我们把用于激活神经系统的功能电刺激设备称为神经假体,神经假体主要包括刺激器和刺激电极两部分,刺激器将外界光信号或电图像信息进行数据处理、编码成电脉冲序列,经由刺激电极直接刺激神经系统中仍有部分功能的神经组织,产生神经电生理信号以恢复其功能。功能性电刺激的刺激方式目前主要有三种:表面式电刺激、经皮式电刺激和全植入式电刺激。表面式FES具有无创、无痛和适应症广泛等优点,但也有刺激效果不佳和靶点选择性差的缺陷。本课题主要对FES采用的表面阵列电极进行优化设计和对不同类型的刺激波形的刺激效果进行对比分析,旨在设计理想的阵列电极和选择合适的刺激波形,为优化设计FES系统奠定一定的理论基础。本文在研究FES电生理学基础上,对采用表面阵列电极的人体前臂FES系统建立几何和数理模型,通过有限元法仿真人体前臂组织的电场分布,使用神经纤维激励函数表征外加电场对神经轴突电活动的影响。在此基础上,选择前臂深层神经纤维激励函数的峰值和半宽度乘积之比作为靶向性能评价函数,利用粒子群算法对表面阵列电极的触点尺寸和间距进行优化设计,得出靶向性能最优的阵列电极尺寸。对比不同刺激波形作用下随时间变化的人体前臂深层神经纤维激励函数最大值,研究结果表明双向电荷平衡矩形波刺激下的神经纤维激励函数最大值稍高于其他刺激波形,有利于神经纤维的激活,从而为表面阵列电极的设计和制定刺激处方提供理论指导。
其他文献
随着科学技术尤其是航空航天事业的高速发展,使得这些领域内结构的复杂性不断增加,同时对系统的结构性能也提出了更高的要求。传统电磁激励智能材料在用于结构振动控制时,需要附加的电磁激发设备和导线连接,这样容易受到外界电磁场的干扰,影响控制信号传输的准确性和实时性,而新型透明铁电陶瓷PLZT在外部高能光束均匀照射下会产生光电热力多能场耦合作用,并沿其极化方向上产生一定的应力和应变,从而实现光能转化为机械能
高分辨率遥感图像具有数据量大,图像结构特征复杂等特点,使得目标湮没在复杂背景中,为遥感图像目标识别及场景分析造成了一定的困难。这也导致了目标识别率低,计算复杂度增加,因此,如何找到一个快速、有效的目标识别方法是遥感图像处理领域一个重要的研究内容。考虑到本文所识别的目标一般与场景类别存在空间依存关系,如桥梁分布于河流上,港口在海域和陆地交汇处等,因此本文提出了一种基于场景上下文约束的目标识别方法,通
微装配机器人是定义在微尺度工作空间,并能完成精密操作的机器人系统,在生物医学,新型材料制备,集成电路制造等领域有着广泛的应用前景。显微视觉伺服作为目前微装配机器人系统的
随着现代工业的发展,传统的压力检测方式已经很难满足生产的需求,现在大部分天然气压力检测依然采用机械表。这种压力测量方式专门的操作人员去抄表,而且无法存储大量的历史数据
随着智能电网对高压开关柜智能化的要求,智能操控单元作为高压开关柜内重要的组成部分,其研究逐渐成为了热点;远程监控系统可以实现对现场设备运行状态的异地监控,实现了技术
公共安全是国家安全的重要基石,涉及国家重大基础设施、自然灾害和社会安全等重大问题。然而当前我国正处于社会经济转型期,突发公共事件呈上升、高峰态势,严重危害了我国的
随着全数字化通信、开放型互联网络以及通信技术的发展,控制系统中用到的网络技术越来越多,现在,网络控制系统(Networked Control System,简称NCS)已经成为自动化领域学者的
近年来,网络控制早已成为控制领域中的一个热门研究方向。然而,网络化控制系统(Networked Control System,NCS)中存在的问题是比较复杂的,如:网络诱导时延、数据丢包、模型不
传统的光学透镜由玻璃或者硅等常规光学材料制作而成,具有固定形状和特定焦距,因光学性能有限而限制了其使用范围。研究表明,电控液晶微镜,作为一种新型的光学器件,显示出一些特殊的电光学特性。通过改变加载在液晶透镜上的电压,可以改变器件上的电场分布,从而改变液晶分子的空间排布,使其呈现受控的光学/电光行为。如通过改变加载在液晶透镜上的交流电压信号来改变液晶透镜的焦距,当同时给多个电极施加电压时实现焦点摆动
汽车横摆稳定控制是汽车主动安全控制的一种,用于保证汽车高速转向的稳定性,提高汽车的行驶安全性。本文针对稳定性控制系统开发需求,研究了基于飞思卡尔高性能16位处理器的快速