计算鬼成像:基于中子源和深度学习算法的研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:hfxwh6
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
鬼成像是一种利用光场的强度关联信息来恢复物体图像的新型成像技术,因为其具有分辨率高、抗噪性好、造价低等优点而受到人们的广泛关注。本论文介绍了作者博士期间在鬼成像领域的主要研究工作以及相关背景知识,论文主体分为以下几个部分。第一部分为绪论。主要介绍了鬼成像的基本原理,从而得到鬼成像相比其他成像方法的优势;然后简述了鬼成像技术的研究进展,并讨论当前研究中存在的困难。我们根据鬼成像领域的热点和难点,分别从中子鬼成像和缩短成像时间这两个方向展开研究,并详细阐述了研究的意义和重要性。第二部分是中子能谱计算鬼成像。首先,我们简单介绍了中子成像的物理基础、中子源和探测设备以及传统中子成像技术,并指出现有中子成像技术存在的瓶颈,讨论鬼成像技术的引入在中子成像领域中能够取得的突破。然后,我们详细介绍了中子计算鬼成像的实验。在散裂中子源的条件下,我们提出一种全新的、高精度的热中子调制器制作方法,并根据散裂源的脉冲特性选择适合时间飞行技术的气体桶探测器,首次实现了高空间分辨率的中子能谱鬼成像。结果表明,相比传统中子能谱成像,中子鬼成像容易实现,可以同时满足高空间分辨和高时间分辨率,且对源的要求低,成像设备小巧便携,造价低廉。第三部分是基于深度学习和启发式算法的快速计算鬼成像。首先介绍了深度学习的基本原理,以及计算机视觉领域常用的网络结构,并结合鬼成像的原理,从卷积神经网络的角度对鬼成像进行了一个新的诠释,从而解释了深度学习算法可以极大提升鬼成像对比度和信噪比的原因。然后,我们详细介绍了快速鬼成像的原理和实验。我们首次提出了一种交叠的采样方式来缩短鬼成像的成像时间,同时利用启发式算法得到去除冗余信息的编码矩阵。为了进一步提升成像质量,我们使用了深度学习算法,并专门设计了一个适用于交叠采样方式的网络结构。结果表明,与传统鬼成像工作相比,我们可以在不损失图像质量的前提下,极大的缩短成像时间,从而提升其应用价值;与直接成像相比,可以克服物体的运动模糊。最后对论文的全部工作进行了总结,并对相关研究领域的发展和对后续工作的开展进行了展望。
其他文献
Ⅲ-Ⅴ族Ga As、In As材料是直接带隙半导体,具有优异的光学性质,在高效率光探测器、激光器等器件中有广泛应用。IV族Si、Ge是微电子领域的基础材料,具有先进成熟的加工工艺。近年十多年来,为了实现Ⅲ-Ⅴ族光电材料在IV族衬底上的集成,以IV族材料为基底的Ⅲ-Ⅴ族材料异质外延生长研究受到了广泛的关注。此外,特定结构的Ga As/Ge异质结薄膜还被预言可能具有拓扑物态等新奇性质。器件的物理性能直
受大自然光合作用启发,为了直接通过太阳能光催化实现富含能源化合物的转化,很多具有不同电子能带结构的半导体材料的人工光合成催化系统被设计出来并得到了很好的研究,该光催化体系涉及多个反应空间位点,跨多个时间尺度的电荷转移与分离过程。催化效率的提高与光吸收效率,电荷转移分离效率以及界面催化效率都有直接的关系。为进一步优化材料设计与构建,本论文中,我们利用多时间尺度的时间分辨光谱技术,通过研究半导体光催化
强关联电子体系中的物理现象在凝聚态物理领域中一直以来是一个重要而且活跃的方向,多年来理论与实验共同结合的研究工作极大地拓展了人们对凝聚态体系的认识与理解。强关联电子体系中一个重要的研究对象即是20世纪80年代发现的铜基高温超导材料。其实验相图中的电子半满填充附近的反铁磁莫特绝缘体是由于电子-电子相互作用导致的违反能带理论的绝缘体;欠掺杂区域的赝能隙相在布里渊区中有不连续的费米面称为费米弧;最佳掺杂
过渡金属氧化物作为典型的电子强关联体系,其自旋、轨道、电荷和晶格等多个自由度存在着强烈的竞争耦合相互作用,已经展示出一系列重要的物理效应和现象,如巨磁电阻效应、高温超导效应、电荷有序和轨道有序现象等,是氧化物电子学领域研究的热点材料。将两种或多种不同过渡金属氧化物组合而构成的异质界面,能够导致层间耦合效应、量子尺寸效应、界面轨道/电荷重整效应等丰富的物理现象,是获得新结构、新物态的重要途径。然而考
磁性量子材料的缺陷工程及其局域量子态自旋的调控,有望构筑未来实用化的自旋量子器件,是目前凝聚态物理研究的热点领域之一。近几年,基于过渡金属的笼目晶格(kagome lattice)化合物是揭示和探索包括几何阻挫、关联效应和磁性以及量子电子态的拓扑行为等在内的丰富物理学性质的一个新颖材料平台。在这些近层状堆叠的晶体材料中,过渡金属元素原子呈三角形和六边形在平面内交替排列,形成了独特的拓扑结构,例如具
红外辐射是自然界中大量存在的信号与能量,但却无法被人眼感知。而红外探测则是人类认识自然界的极其重要的武器,能扩展人类的视野,探索未知世界。红外探测器技术经过长于百年的发展,从最初的国防军事等领域已经扩张到民用设备方面,对社会生活、生产已经科学研究都发挥着重要的作用。近些年来,半导体材料的光子型红外探测器凭借其高灵敏度和高响应速度在遥感、成像、光通信等诸多领域均有突出贡献。而在1.1μm短波红外波段
以自旋为信息单元的自旋电子学器件因功耗低、热稳定性高、高信噪比和半导体工艺兼容度优异等特性有望成为后摩尔时代的理想高速信息存储和逻辑器件。目前,各种自旋电子器件的功能特性完全依赖自旋极化的电子(流),而自旋极化电子(流)像半导体中电荷(流)一样,不可避免地受到杂质和晶格的散射、始终会导致系统的焦耳热及其热能耗,所以研制基于纯自旋调控的核心元器件及其电路成为自旋电子学今后的研究重点。巨磁电阻(gia
量子相和相变是凝聚态物理关心的重要问题,它们往往是新理论、新发现的孕育者。对过渡金属氧化物的研究引出莫特绝缘体和Hubbard模型;围绕高温超导,对反铁磁海森堡基态研究引出了共振价键态(Resonating Valence-Bond state,RVB)和量子自旋液体(Quantum Spin Liquid,QSL)的概念,而后分数化和拓扑性质渐渐走入人们的视野。但由于在复杂的量子多体体系中,因为
偏振是描述光的重要物理量,体现了光作为横波的振荡特性。作为一种重要的信息载体,偏振特性在通讯、加密、成像、显示、遥感等领域中有广泛的应用。然而传统的偏振调控光学系统往往体积庞大而且加工工艺复杂,无法满足当今器件高密度片上集成以及多功能的发展趋势。近年来,随着微纳加工技术以及方法的进步,构筑具有新颖偏振特性的微纳结构成为解决复杂片上偏振技术难题的关键突破口。近年发展起来的光学超表面是利用人工亚波长微
化学掺杂是调控非常规超导电性的有效手段。对不同掺杂浓度的超导体进行细致的表征有助于提取主导超导电性的关键参量,进而为深入理解非常规超导电性机理奠定基础。本论文中,我们通过样品制备参数调节和离子注入这两种方法对尖晶石结构氧化物超导体LiTi2O4进行了系统的掺杂,并开展了相应的电输运和电子态表征。此外,结合高通量实验技术,我们搭建了一台激光分子束外延-扫描隧道显微镜联合系统,旨在生长组分连续变化的超