强关联电子体系格点模型的行列式蒙特卡洛研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:wangqin613117
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
强关联电子体系中的物理现象在凝聚态物理领域中一直以来是一个重要而且活跃的方向,多年来理论与实验共同结合的研究工作极大地拓展了人们对凝聚态体系的认识与理解。强关联电子体系中一个重要的研究对象即是20世纪80年代发现的铜基高温超导材料。其实验相图中的电子半满填充附近的反铁磁莫特绝缘体是由于电子-电子相互作用导致的违反能带理论的绝缘体;欠掺杂区域的赝能隙相在布里渊区中有不连续的费米面称为费米弧;最佳掺杂区域d波超导相以上的奇异金属相,其电荷输运等性质无法用传统的朗道费米液体理论描述。在量子霍尔效应家族,同样是20世纪80年代发现了分数量子霍尔效应,其中存在着被称为任意子的分数化激发,是超越了朗道的基于对称性的相的分类范式的强关联电子现象。此外还有但不限于重费米子中的非费米液体,强电声子相互作用体系中的电荷密度波相(CDW)及凝聚态狄拉克电子体系中的相变等强关联电子体系值得研究与讨论。对于凝聚态物理体系的研究,理论分析方法、数值计算方法与实验的结合是非常重要的。特别在强关联体系中,由于问题本身的复杂性与难度导致纯理论的解析分析难以得到强关联问题完全的答案,所以数值方法的发展与进步对于强关联问题的研究有重要的意义。行列式量子蒙特卡洛方法正是研究强关联电子问题的一种非常有效的数值算法。近年来研究人员不仅对其符号问题进行了持续的研究与尝试,也发展了诸如自学习蒙特卡洛方法使其算法效率在特定模型上得到了极大的提升。本论文中,我主要使用了行列式量子蒙特卡洛算法研究电子-声子耦合的Holstein模型,首先我使用了自学习蒙特卡洛方法对二维正方晶格半满Holstein模型的数值模拟效率进行了提高,然后我研究了六角晶格上的Holstein模型,发现其存在着半金属与电荷密度波两个相,零温的相变数据符合手征Ising普适类。我研究了有限温半满时的正方晶格Hubbard模型,计算了其中的局域态密度随着温度的变化,并结合隶费米子方法的结果给出了基于电荷激发与自旋涨落共同作用的赝能隙图像;同时我们也配合指数张量方法研究了掺杂的Hubbard模型,得到了实空间的自旋关联函数并与冷原子实验进行了对照,结果表明随着掺杂比例的增加,对角与三近邻自旋关联发生了反号迹象。最后我研究了正交费米子与Z2规范场、伊辛物质场耦合的晶格模型,通过调节模型的参数,我们实现了正交金属相、费米弧相、去禁闭费米液体相与s波超导等相及相变。我们的数值结果表明强关联电子体系的格点模型的数值研究可以实现丰富且奇异的强关联物理现象,如非费米液体与违反Luttinger定理的类似费米弧现象,通过无偏差的大规模数值计算在实际材料与解析理论之间搭起了一座扎实的桥梁。
其他文献
自然界的光合作用在传能与电荷分离过程中所展现出的高效性一直令人心向往之。近十年,量子相干机制的提出为理解高效传能与电荷分离过程打开了一扇新的大门。而如何从所观测到的量子相干现象刻画出实际的相干传能物理图像仍然存在诸多争议,还需要发展更为有效的实验和理论方法对量子相干过程进行检验。本论文以二维电子光谱为主要的实验研究手段,详细介绍了二维电子光谱在仪器搭建过程的主要技术难点和解决思路,并且在散射抑制和
自从2004年第一次被成功剥离以来,具有sp2杂化的蜂窝状格子的石墨烯引起了研究者广泛的兴趣。石墨烯本身具有优异的电学、机械以及光学等性质,有着巨大的应用潜力。为实现石墨烯在电子学领域的应用,首先需要解决的关键问题是在绝缘基底上制备大面积、高质量的石墨烯。随着研究的发展,研究者发现在过渡金属单晶表面外延生长是一种制备高质量、大面积石墨烯的有效方法。然而,石墨烯π带和过渡金属d电子之间的杂化作用会导
光纤作为现代光信息领域的重要媒介,其每一次进步都推动着与之相关的诸如光通讯、光学传感、非线性光学、光纤激光器、量子光学等领域的发展,深远地影响着人类社会的变革。光子晶体光纤是光纤家族里的重要一员,周期性的光子晶体包层结构使其具有丰富的设计自由度。为了应对现代社会的发展需求,光纤设计领域还有一些亟待解决的难点,如单偏振单模的宽带实现等。拓扑光子学是光学领域的一个新兴方向,它是拓扑原理和光学体系的融合
全固态锂电池被认为是替代传统锂离子电池,兼具更高能量密度与高安全性的下一代锂电池的潜在选择。虽然目前固体电解质获得了广泛的研究,锂离子电导率不断提升,部分固体电解质离子电导率已经达到甚至超越电解液的水平,但是全固态锂电池的电化学性能距离先进锂离子电池依旧存在巨大的差距。而导致这种差距的关键问题为固态锂电池中的表界面稳定性差,导致界面性质严重限制了电池整体性能。在本论文中主要关注两种重要固体电解质材
在自旋电子学中,人们希望通过外部条件,如电场或者磁场,来调控材料中的载流子自旋方向从而设计逻辑器件。半金属和双极性磁性半导体是潜在实现该功能的材料,它们可以提供100%极化的自旋电流以及通过外部条件进行可逆的载流子自旋方向调控。近些年来,人们一直在寻找和设计该类具有高居里温度的自旋电子学材料。另一方面,传统的磁性材料通常由含d/f电子的金属构成,而近期人们发现非磁性元素,如C、N、O,也可以携带磁
在本文中,我们介绍了一维的量子自旋链在几种不同边界条件下的严格解。在第一章中,我们首先介绍了在量子可积系统中起到重要作用的方法——Bethe ansatz方法,以及在实际应用中Bethe ansatz方法的各种不同形式,例如:代数Bethe ansatz,嵌套代数Bethe ansatz方法以及非对角Bethe ansatz方法。我们在这一章中也介绍了这些方法在应用时所涉及到的各种概念和技术等等。
超快脉冲激光技术的发展为磁光实验开辟了一个新的领域——超快磁动力学,这种在飞秒和皮秒尺度上对磁矩进行的探测和操纵,为未来高频磁器件的研究与探索提供了新的方法。早在1996年,E.Beaurepaire等科学家就观测到了飞秒尺度的激光诱导超快退磁现象,而后Koompans等人提出并实现了用飞秒激光在磁性薄膜中激发纳秒尺度自旋进动和检测自旋波的可能,这为我们进行自旋探测和研究提供新的思路。二十多年的发
铁基超导体作为第二大高温超导家族,自发现以来一直是凝聚态物理中的研究热点。尽管理论和实验上投入了大量的精力,但是其超导机理仍然没有得到解决。过渡金属硫化物具有优异的物理化学性质和巨大的应用前景,受到了人们广泛的关注。角分辨光电子能谱技术(ARPES),作为唯一能直接探测材料内部电子能量、动量和自旋信息的实验手段,在铁基高温超导体以及过渡金属硫化物电子结构的研究中扮演着很重要的角色。本论文使用高分辨
Ⅲ-Ⅴ族Ga As、In As材料是直接带隙半导体,具有优异的光学性质,在高效率光探测器、激光器等器件中有广泛应用。IV族Si、Ge是微电子领域的基础材料,具有先进成熟的加工工艺。近年十多年来,为了实现Ⅲ-Ⅴ族光电材料在IV族衬底上的集成,以IV族材料为基底的Ⅲ-Ⅴ族材料异质外延生长研究受到了广泛的关注。此外,特定结构的Ga As/Ge异质结薄膜还被预言可能具有拓扑物态等新奇性质。器件的物理性能直
受大自然光合作用启发,为了直接通过太阳能光催化实现富含能源化合物的转化,很多具有不同电子能带结构的半导体材料的人工光合成催化系统被设计出来并得到了很好的研究,该光催化体系涉及多个反应空间位点,跨多个时间尺度的电荷转移与分离过程。催化效率的提高与光吸收效率,电荷转移分离效率以及界面催化效率都有直接的关系。为进一步优化材料设计与构建,本论文中,我们利用多时间尺度的时间分辨光谱技术,通过研究半导体光催化