装配式钢筋混凝土柱抗冲击性能试验研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:jfm98999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,装配式钢筋混凝土结构在我国得到大力发展,相比于现浇结构,装配式结构有高质量、环保、快速施工等优点。装配式结构装配处位置的连接可靠度很大程度上决定了结构的安全使用性能,因此目前国内外研究学者针对装配位置处的连接方式及连接可靠度进行了大量研究。随着经济以及交通的发展,车辆撞击桥梁、房屋等结构的意外事故的发生频率越来越高。装配式结构在遭受外界冲击荷载作用下能否依然保持结构的稳定性成为一个值得探讨的问题。因此,本以装配式钢筋混凝土柱结构摆锤冲击试验为基础,分析不同连接方式的装配柱在冲击作用下的抗冲击性能差异。最后基于试验数据利用有限元软件LS-DYNA建立试件数值模型,并进行参数化分析,更深一步探讨不同冲击情景下装配式柱的抗冲击性能。本文研究主要分为以下几方面:(1)本文总共设计了四个钢筋混凝土柱结构,其中包括三个装配式连接柱:灌浆套筒连接柱(PC1),浆锚连接柱(PC2)和螺栓连接柱(PC3),以及一个用于对比的现浇柱(RC)。利用大型摆锤试验装置完成了对四个柱结构的冲击试验。(2)对每个试件的冲击力时程曲线、位移时程曲线、钢筋应变时程曲线、加速度时程曲线等试验结果进行了分析,基于试验数据分析了试件耗能以应力波传递规律等。对比了四个试件的抗冲击性能差异、冲击过程中裂缝发展以及最终的破坏模式。并为有限元数值模拟提供了试验数据支持。(3)利用有限元分析软件LS-DYNA模拟验证了RC柱及PC柱,数值模拟结果与试验结果吻合较好,模拟误差较小。并且冲击过程中的整体损伤发展也与试验基本一致,验证了模型的正确性。(4)对四个试件有限元模型进行参数化分析,包括轴压比、冲击位置、冲击物体速度及质量。对比分析四个试件在不同参数设置下的冲击动态响应特征值(峰值冲击力及峰值位移)的变化关系,并给出了相关抗冲击性能设计建议。
其他文献
自从“未来材料”石墨烯被发现和广泛研究之后,二维过渡金属硫族化合物(TMDs)材料凭借其自身原子级超薄厚度、高精度集成兼容和优异的光电性质在光电子器件应用方面具有独特优势。过渡金属硫族化合物是一类材料家族,其中典型代表是二硫化钼(MoS2)。二硫化钼凭借其具有独特的电子能带结构、优异的光电性能和独特的物理化学性质而受到人们的广泛关注。单层二硫化钼由于自身2H相原子堆垛结构,单层厚度不到1纳米,可见
热电池是一种依靠加热来激活的一次电源,激活时间短,拥有大电流放电能力,能在各种恶劣苛刻的野外环境下储存数十年而不失效。粉末压片法是目前常用的热电池正极-电解质复合片的制备方法,该法的制备工艺较为复杂、制备的复合片韧性差,生产成本较高,难以实现柔性以及异形化的单体热电池的制备。本文通过简单的流延成型工艺,制备了两种柔性氧化物薄膜正极以及柔性电解质薄膜,对两种薄膜正极的电化学性能和高温反应机理进行了研
有机光电探测器具有质量轻、柔性好、制备工艺简单等优点,在光学传感和生理健康信号监测等领域有重要应用前景。新型稠环电子受体材料的光学带隙较窄,为提升有机光电探测器在红外或近红外波段的探测能力提供了重要的材料基础。如何构建灵敏度高、稳定性好的有机光电探测器是目前研究的焦点和难点。本论文以基于非富勒烯稠环电子受体材料的平面异质结有机光电探测器为研究对象,开展有机半导体的光电性质和探测器的结构设计研究,调
矩阵变换器是一种交流-交流变换器,其具有功率密度高,可实现能量双向流动,能产生频率和幅值可调的正弦输出电流,能在输入侧实现单位功率因数等特点,在电能变换领域具有广阔的运用前景。各国学者相继提出了矩阵变换器的控制策略,其中,调制型模型预测控制得到了广泛的关注,其具有动态响应快、输出电流波形质量高等特点。但是该方法概念复杂,计算量大,且当系统参数发生变化时,系统控制效果明显下降。因此,本文以矩阵变换器
双离子电池石墨正极材料是决定电池能量密度和循环寿命的重要因素。石墨正极材料存储阴离子的工作电位高,因而存在电解液分解导致循环性能下降的缺点。针对上述问题,本文选择厚度为30~50 nm的石墨片、人造石墨颗粒和SiO2/碳包覆的鳞片石墨作为双离子电池正极材料,综合运用多种结构和电化学分析方法,研究了这些材料的微观结构、成分和电化学存储阴离子PF6-的性能,得到如下结论:(1)在锂基和钠基双离子电池中
针对双离子电池充放电循环中石墨正极材料存在体积变化大和电解液分解严重的缺点,采用简便的溶解-析出法结合高温碳化制备出Ti O2纳米颗粒和碳包覆的石墨片正极材料。此外,针对锂硫电池中硫正极电导率低以及多硫化物穿梭导致循环性能下降的问题,通过喷雾裂解和高温碳化制备出氮掺杂多孔碳球,进而负载硫作为锂硫电池正极材料。采用多种结构表征和电化学分析方法,对比研究了上述两种正极材料的微观结构、化学成分和电化学性
二维材料具有独特的性质,譬如原子级薄的厚度、大的比表面积、量子限域效应等,同时,二维材料有望解决短沟道效应,被认为是后摩尔时代的关键材料之一,近些年来获得了科研人员的极大关注。通过层间范德华力的作用,不同的二维材料可以堆叠在一起形成异质结构,具有极高的自由度,在器件的设计、应用和集成方面展现出巨大的潜力。其中,平面各向异性二维材料由于其本身的低对称性晶格结构展现出更丰富的物理特性,并且其增加的用于
超级电容器作为一类新型的储能器件具有快速的充放电速率、高的功率密度以及优异的循环稳定性,在电动汽车、电子信息、国防军工、航空航天等领域有巨大的应用价值和市场潜力。发展超级电容器的核心之一在于开发高性能的电极材料。导电聚合物如聚苯胺、聚吡咯等的电化学活性高、导电性优异、制备简单且成本低廉,是一类非常有潜力的超级电容器电极材料。而导电聚合物水凝胶更是将导电聚合物优异的电化学性质与水凝胶良好的机械柔性和
碳质材料作为锂离子电池的负极材料自1991年首次商业化以来一直受到广泛关注。碳质材料根据其微观结构一般可以分为三种类型:石墨、软炭和硬炭。针状焦和石油焦这类软炭具有独特的微观结构,短程有序石墨随机排列在无序的碳基体中,热处理温度决定了其微观结构,并直接影响其电化学性能。阐明石油焦和针状焦在热处理过程中的结构变化规律及其构效关系,揭示储锂机制,对其作为锂离子电池负极材料的生产和应用具有重要的指导作用
当代,伴随信息技术和计算机科学的发展,诞生了以数字化信息媒介为基础,信息高效互动传播为特征的新媒体,它改变了公众获取信息的渠道,进而对日常工作、生活的建筑空间产生了影响,可以说我们正身处于一个被信息包围的新媒体时代。中国正处于经济结构优化调整的时代浪潮中,2014年李克强总理对于“双创”口号的提出,标志着我国正式步入了由高速度向高质量发展转化的新时代,其中,众创空间成为了贯彻落实新发展理念的重要引