【摘 要】
:
信号调制方式识别是指在未知调制信息的情况下对接收到信号的调制类型做出正确判断。通信信号调制识别不仅在民用领域意义重大,在军事及国家安全方面也都发挥着至关重要的作用,在电子战中,快速准确地判断出未知信号的调制方式是制胜的关键。在人工智能浪潮下,将机器学习算法与调制识别技术结合已经成为了发展趋势。本论文“基于机器学习的数字信号调制识别及FPGA设计与实现”主要研究基于机器学习的调制识别算法和神经网络的
论文部分内容阅读
信号调制方式识别是指在未知调制信息的情况下对接收到信号的调制类型做出正确判断。通信信号调制识别不仅在民用领域意义重大,在军事及国家安全方面也都发挥着至关重要的作用,在电子战中,快速准确地判断出未知信号的调制方式是制胜的关键。在人工智能浪潮下,将机器学习算法与调制识别技术结合已经成为了发展趋势。本论文“基于机器学习的数字信号调制识别及FPGA设计与实现”主要研究基于机器学习的调制识别算法和神经网络的硬件实现方法,目的是在FPGA开发板上完成数字调制信号的识别,实现硬件搭建的神经网络既能基本达到软件实现网络的识别准确率,并且训练速度又远高于软件的目标。系统仅使用乘法器和加法器IP核,所有功能模块均是自行设计实现,有利于不同FPGA平台移植。首先,研究了一种基于瞬时特征的调制识别算法,并分别用了决策树和神经网络分类器对调制信号进行了分类。在使用决策树对调制信号进行分类的过程中,通过仿真确定了各特征参数的门限值并根据各参数对信号进行识别,实验表明,高信噪比下信号的识别率较高,当信噪比大于14d B时,整体识别率均在95%以上。基于神经网络的调制识别算法仿真结果表明,神经网络具有灵活性高、鲁棒性强的优点,在调制识别过程中表现出了优异的性能。然后,针对一些实时性要求高的场合,以及神经网络在处理大量样本或者层数、各层神经元个数增加时会使得训练时间成本增加的情况,本文基于BP神经网络算法推导出FPGA实现BP神经网络的硬件结构,用硬件描述语言实现了BP神经网络。分析了硬件实现过程中的关键问题并给出解决方案,详细介绍了各模块的实现过程。通过对状态机的设计,让各个模块之间能够有序地运行,并且通过仿真验证了各个模块功能的正确性。最后,在FPGA上实现了数字信号调制方式的识别。通过整体功能仿真及上板实验,在误差允许范围内,硬件功能正确。实验结果表明,在网络结构相同及硬件时钟频率为50MHz的条件下,FPGA实现的网络与软件实现网络对调制信号的识别准确率相差在1%左右,并且硬件训练速度和软件相比,提高了2个数量级,从而说明基于FPGA的神经网络计算架构具有重要的现实意义,为信号调制识别实时性要求高的场合提供了一个新的思路。
其他文献
近些年来,多智能体系统的协同控制被广泛应用于智能机器人、无人机编队、人造卫星等领域,引起了诸多学者的注意。目前,多智能体系统的协同控制问题主要包括一致性控制、编队控制和包含控制等,在此类问题的研究中,智能体之间的信息传递是至关重要的。通常情况下,我们用拓扑图来表示智能体之间的通信关系。在以往的研究中,多智能体系统的通信拓扑大多被假设为固定拓扑,而考虑到多智能体系统所处操作环境的复杂性,智能体之间的
实际工程系统往往都设有物理安全边界,例如流水线工业系统,风力发电系统,电力系统,高铁系统等,运行过程中系统自身状态受物理边界严格约束,以确保长期稳定可靠运行。一旦这样的物理约束装置被忽略或发生故障,系统就面临超界运行风险甚至发生重大安全事故。随着工业生产复杂化,相应的生产装置和系统的非线性特性日益凸显,系统参数不确定性也随之增加,系统控制器设计难度也随之增加。因此,针对具有参数不确定的非线性系统的
定位技术是实现移动机器人自主导航的关键技术之一。视觉SLAM是一种同时完成定位与地图构建的技术,目前得到了越来越多的应用和研究。针对视觉SLAM在一些室内场景无法有效定位的问题,通常借助自身算法框架的冗余性完成重定位。但是该方法导致了定位实时性的下降,当机器人快速移动时,这种影响尤其明显。为了避免冗余的算法框架对视觉SLAM定位实时性的影响,本文通过引入IMU来辅助视觉SLAM,实现多种工况下机器
头部运动障碍或头部下垂综合征(DHS)在许多运动神经元疾病中十分常见,患者的颈部肌肉发生退行性减弱,使得抬头或移动头部变得十分困难。目前该疾病没有较好的治疗方法,主要使用颈托设备来缓解头部下垂的症状。然而,颈托使得头部的运动受到局限,也不能按照患者想要的移动方向进行调整。因此,研究一种可以实现临床治疗、功能全面、康复机理完善、操作方便的颈椎康复机器人,对于治疗、康复头部下垂综合征有着重要意义。本文
不均衡分类问题在实际生产生活中频繁出现,如生物信息学、电信或金融风险评估和文本分类等。传统分类器由于期望整体精度最大化,常常忽略少数类(样本较少的类别)的分类精度,然而少数类的分类精度往往比多数类(样本较多的类别)更为重要。针对这一问题,一种有效的解决方法是基于数据增强将不均衡数据恢复为均衡数据。这种方法的目标是生成具有较强类判别性和多样性,且真正有助于分类器构建的少数类新样本。然而,在不均衡数据
标记分布学习是一种新的可以用来解决标记多义性问题的学习范式,是对单标记学习和多标记学习的进一步泛化,已经成功应用于人脸情感分析、头部姿态识别以及人脸年龄估计等领域。在标记分布学习的标记集合中,标记间关系广泛存在并且有助于提升标记分布学习性能。因此本文从标记间关系这一角度出发,对标记分布学习展开深入研究。首先,针对局部标记间关系展开研究。当前存在的利用局部标记间关系的算法都服从一个假设,即样本之间的
闭链连杆式移动机器人是一种具有大尺度变形能力,高越障能力的地面移动机器人。目前对闭链连杆式移动机器人的研究主要集中于论证移动的可行性,对于其移动能力及评价体系仅有较少的涉及。本文从平面6R单环运动链的理论研究出发,对平面6R单环运动链为基础构造的闭链连杆式机器人的移动进行数学建模并进行了运动学分析、动力学分析和步态规划,提出6R机器人移动理论,新理论得到了这种运动链连续移动和越障过程的步态通解,并
随着科学技术的发展,各行各业对材料以及结构的安全性要求日益提高。由于材质自身缺陷以及长期受到各种载荷的影响,材料和结构在生产及服役的过程中会产生各种类型的缺陷,比如裂纹、孔洞以及夹杂等,进而导致重大安全事故,造成人员伤亡和巨额财产损失。因此发展有效的无损检测技术至关重要。超声检测技术由于其具有灵敏度高、穿透能力强、缺陷定位准确、操作简单、对人体无害等优点被广泛应用。但是该方法针对复杂形状缺陷的定位
随着跨境贸易的快速发展,商品的协调制度(Harmonization System,HS)编码分类作为企业进出口贸易的重要海关程序,其准确性和高效性越来越受到相关部门的重视。如果能够自动、准确、高效地进行商品HS编码分类,将有助于海关部门通关查验、关税计算等工作的顺利进行,同时也可以帮助企业提高通关效率,降低通关成本。商品HS编码分类任务可以看作是一个文本分类任务,即给定商品的一段描述信息,目标是确
人脸活体检测作为人脸识别系统的重要安全保障环节,近几年在生物识别技术领域中飞速发展,广泛应用于移动支付、门禁系统和金融认证等场景。然而,人脸识别系统容易受到来自打印图像、数码图像以及回放视频等不同方式的攻击,使得人脸识别系统的安全性受到严重的威胁,所以,人脸活体检测在人脸识别系统中起着至关重要的作用,具有重要的研究价值。人脸活体检测在生物识别技术领域中是备受关注的研究方向,但目前仍存在以下几个问题