仿生刚柔混合水下操作臂的研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:jywaco
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前刚性机器人已在各行各业中得到了广泛应用,但是由于其自身结构的原因使其无法适应各种非结构化环境,而且在与易碎物品交互时安全性差;而完全柔软的机器人灵活度高、环境适应性强,但存在承载能力低、建模困难等问题。在此背景下,本文基于仿生技术应用于工程实际,设计了一种新型刚柔混合水下操作臂,主要进行了以下研究:首先,基于BioTRIZ和可拓学相结合的方法,研制一种径向可变形的水下刚柔混合操作臂。通过需求分析查找BioTRIZ矛盾矩阵,再结合生物实例库确定连续体生物蛇为生物原型,并依据可拓学理论建立了生物耦合可拓模型,并对生物原型与仿生模型进行相似性评价。对于仿生设计存在的不足,使用TRIZ理论进行优化改进。所设计的操作臂以水液压人工肌肉为驱动源,兼具有柔性构件和刚性构件,在保证操作臂具有一定柔性的同时,还具有较大的承载能力。其次,基于几何约束和力平衡约束对水下刚柔混合操作臂空载与带载时的运动学进行分析。建立单根人工肌肉的静态数学模型,随后基于分段常曲率假设,依据操作臂运动时的几何关系,建立操作臂空载时的正逆运动学模型。并依据正运动学使用Matlab对操作臂末端的位置和姿态进行求解,得到操作臂末端的工作空间。对操作臂带载时的受力情况进行分析,通过建立力约束与几何约束之间的关系,对操作臂带载时的正逆运动学进行求解,并比较操作臂空载与带载时工作空间的范围。然后,使用Abaqus软件对单根肌肉以及操作臂整体结构运动进行仿真分析。使用Abaqus软件内置的建模功能,建立人工肌肉及操作臂有限元仿真模型,对单根人工肌肉进行仿真,分析编织角度及壁厚对其收缩率的影响。之后分别对操作臂整体进行空载与带载运动仿真,分析其运动特性。最后,进行水液压人工肌肉及刚柔混合水下操作臂的相关实验。对水液压人工肌肉进行静态特性实验测试,然后对操作臂弯曲时的负载能力进行测试,并对操作臂在直立状态和弯曲状态时进行吞吐物体实验,验证了操作臂适应性强、承载能力大的特性。
其他文献
学位
谷子在杂粮生产中占据重要地位,但是由于近几年来谷子白发病的大面积发生,对谷子产量和提升品质构成了严重威胁。谷子白发病菌属活体寄生菌,体外培养比较困难。目前对谷子白发病菌的培养,接种技术以及谷子与白发病菌互作机制等方面的研究较少。本研究采用卵孢子与高感品种晋谷21谷种拌种的方法,通过测定谷子植株形态指标和相关生理指标,摸索白发病菌最适侵染条件;通过利用孢子悬浮液在谷子不同生育期、不同部位接种,探索白
数字图像技术为现代社会提供了多方位的技术支持,为人类社会日常生活和科研探索创造了便利。但数字图像在采集和传播过程中不可避免的会引入种种无法预料的噪声污染,破坏图像内容,阻碍人们提取图像信息。为解决这一困扰,图像降噪技术应运而生,在近几十年中蓬勃发展,涌现出大量优秀的降噪算法。但现阶段传统降噪算法对于噪声像素的判断方式较为片面,降噪算法复杂度两极化严重。本文结合降噪算法研究现状和发展趋势,对脉冲噪声
学位
随着“工业4.0”、“中国制造2025”等规划的提出,制造业的生产模式正朝着智能化方向转变。数字孪生(Digital Twin,DT)作为实现智能制造的重要途径,正不断被工业界重视。本文以工业机器人为研究对象,构建工业机器人数字孪生原型系统,对工业机器人运动仿真、智能视觉识别定位与状态监控进行了研究。主要的研究内容如下:首先,在分析国内外数字孪生研究现状的基础上,确立工业机器人数字孪生系统的设计目
目前刚性躯干四足机器人已有很多较为成熟的案例,而脊柱型四足机器人仅存在于实验室环境。脊柱关节的加入理论上对速度和能量利用效率都有增益,但同时使得四足机器人运动稳定性问题变得更加复杂,若对脊柱运动控制不当很容易使四足机器人失稳。通过观察马犬等动物的高速运动发现,脊柱运动的同时往往还伴随着头部的运动,受此启发,本文主要研究头部在脊柱型四足机器人跳跃运动中的作用机理,以及脊柱型四足机器人的跳跃运动动态稳
随着现代工业的发展,以卫星天线、飞机等装备为代表的大型结构产品在制造及装配过程中对自动化程度的要求越来越高。能够高精度快速的检测大型结构体的相对位姿,保证系统的各部件及整体的装配速度成为了研究的热点。双目视觉的检测方式在实时性、自动化程度等方面具有其他检测方式不具有的优势,而单组双目视觉系统无法对大型结构产品进行高精度的检测,因此,采用多组双目视觉系统检测大型结构体的相对位姿技术对于大型结构体的对
目前,在中国制造2025规划下我国工业化正处于转型的重要阶段,在工业生产中危化品气体泄漏已经成为了威胁人类生命安全的主要危险之一,因此对危化品气体的浓度监测及检测成为人们日常生活中不可或缺的安全防范手段。由于单一的气体传感器处在选择性差和交叉敏感的特点,不能满足危化品气体浓度检测精度的要求。因此针对危化品气体检测的多传感器数据融技术的研究具有重要意义。本文通过了解最为常见的危化品气体环境,选择以C
现代环境下科技的推进与发展速度愈发加快,人类的步伐开始遍布整个三维空间,同时随着陆地上自然资源日渐枯竭,而海洋中的大量资源由于种种原因还没有进行开采。在这个大环境下,水下目标探测作为海洋研究领域中十分重要的组成部分,吸引了无数学者投入到这项工作中。与此同时,深度学习在多个领域均有着十分突出的表现,因此本文的研究工作主要在于将深度学习算法应用于水下目标探测领域,主要工作如下:首先针对水下目标探测过程
在能量资源受限的水下环境中,水声传感器网络(Underwater Acoustic Sensor Networks,UASNs)在传输数据的过程中,提高能量效率是UASNs要解决的重要问题之一。本文针对上述的问题通过对水下节点收发数据包能量消耗的差异性分析,提出一种节能的水声机会路由候选集优化算法(Candidate Set Optimizing Algorithm,CSOA)。CSOA是对现有U