航空发动机涡轮盘结构拓扑优化设计研究

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:zhaoshuang1989
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
航空发动机之于航空飞行器相当于人的‘心脏’,发动机性能优劣对其有着决定性影响,发动机的性能指标中,轻量化是一个重要的研发指标,轻量化可以提高发动机推重比,进而提高飞机的各项性能。发动机中涡轮盘是重要的组成部件,其结构性能对发动机的性能影响很大,所以对涡轮盘进行结构优化设计是十分有必要的,针对传统的形状优化的局限性,本文以某型号航空发动机涡轮盘为优化构型,建立了完整的拓扑优化流程,实现对涡轮盘的优化设计。本文目标为实现轮盘的空心结构设计,分别从刚度拓扑优化、应力拓扑优化和频率拓扑优化这三个方面对涡轮盘进行拓扑优化,建立了一套涡轮盘的针对增材制造的拓扑优化流程,本文的有限元分析及优化流程是在Matlab程序中编程实现的。本文的主要研究内容如下:(1)以轮盘的扇区结构为优化模型,以轮盘最大柔顺度为目标,进行了轮盘子午面的拓扑优化;同时添加了变量连接,保证挖孔的周向连续和一致性;之后针对挖孔过大的问题结合了尺寸控制的优化算法,对挖孔大小进行了控制;最后针对当下热门的点阵优化,进行了基于子结构的周期性结构的优化设计。(2)涡轮盘的应力大小是一个重要性能指标,针对此问题提出了涡轮盘的应力为约束的拓扑优化,以K-S函数作为凝聚函数计算关心区域的最大应力,通过优化结构的材料分布来实现对关心区域最大应力的降低。(3)涡轮盘作为一个转动件,动力学特性是优化必须要考虑的指标,因此提出了以频率为目标的拓扑优化,提出了旋转周期结构频率的优化计算方法。最终的优化结果既满足了轻量化的优化目标,同时某阶频率也避开了共振点,优化效果较好。
其他文献
目前,所有机器都朝着智能化的方向发展,自主驾驶汽车和自主驾驶飞机等正逐渐走进人们的生活。在实现所有交通工具完全自主化之前,将经历有人驾驶与自主驾驶共存的过程。那么自主驾驶交通工具能很好地了解人的意图,做出相应的决策,执行相应的动作,并安全高效地完成驾驶任务就显得尤为重要。可将有人驾驶和自主驾驶共存的交通系统看成一个人在回路系统。基于人在回路的控制思想,采用合适的控制策略,可对自主驾驶交通工具和有人
双曲型守恒律方程是计算流体力学中最重要的控制方程类型之一,其数值解法既是CFD数值方法研究的重点之一,也是难点之一。我们通常只能得到该方程的弱解,因此需要对其进行一些限制处理,才可以得到与物理背景相符的解。限制方法主要从两个方面对问题进行研究:其一是能量稳定方面,其二是熵稳定方面。其中前者的格式结构更简洁、精度更高,近些年来引起了众多学者的关注,能量稳定格式的核心是通量重构思想,基于该格式众多学者
目前越来越多的研究者和科研机构发现了折叠翼尖技术的潜力,开展了广泛的气动弹性研究。而折叠翼尖技术由于其涉及到多变量、多学科、多策略的交叉优化求解,因此具有相当大的复杂程度和计算量。本文针对折叠翼尖的气动弹性问题,提出基于部分动力学等效方法简便快速的对折叠翼尖模型进行气动弹性评估和技术开发,同时通过对机翼模型和部分等效的平板模型开展仿真计算进行初步验证,并应用于大展弦比模型和小展模型的折叠翼尖气动弹
航空发动机作为一种高精度的复杂机械热力系统,常常工作于高温、高压、高振等恶劣的条件下,而长期工作于此类环境下极易造成零部件的寿命的缩减或损毁,进而导致航空事故的发生。因此,开展航空发动机的健康状态监测与管理的相关研究,对我国航空事业发展的经济性、稳定性与安全性具有重大意义。本文依托于与中航工业沈阳发动机设计研究所合作研究的“航空发动机数据综合管理、性能评估与故障诊断软件系统”项目,针对传统专家系统
由于飞行器服役过程中要面临复杂的气动加热,必须对结构进行热防护以保证结构的正常工作。热防护材料通常粘接在飞行器金属蒙皮上,服役过程中面对超高速环境,表面可能会产生应力开裂现象,粘接界面极易产生脱层现象,导致结构性能下降,甚至引发严重的后果,因此,为确保热防护结构的安全稳定,需要对其进行损伤监测。分布式光纤传感器体积小巧,被埋入结构也几乎不会影响被测结构的力学特性,加上其抗干扰性能强,可以满足高密度
飞机结冰给飞机航行带来了巨大的安全隐患,传统的防/除冰技术存在能耗高、操作复杂、污染环境、易造成金属疲劳等弊端。在这种背景下,基于仿生学的超疏水涂层为飞机防冰提供了新思路。本论文使用羟基封端的聚二甲基硅氧烷(HO-PDMS)或聚甲基三氟丙基硅氧烷(HO-PMTFPS)替代部分聚四氢呋喃醚二醇(PTMEG)作为软段,1,4-丁二醇(BDO)和4,4’-二苯基甲烷二异氰酸酯(MDI)作为硬段,反应合成
飞行器鸟撞事故对于飞行安全的威胁日益剧增,一方面鸟撞事故给世界各国造成了每年数亿元的经济损失,另一方面鸟撞试验研究成本昂贵。因此以光滑粒子流体动力学方法(SPH)为代表的有限元虚拟仿真技术在飞行器结构抗鸟撞设计及其改进设计方面发挥着重要作用。本文基于SPH方法,研究了一种典型飞机尾翼结构的鸟撞过程及变形机理,并研究了鸟撞位置、角度对结构应力、变形、能量和材料失效行为的影响,最后在此基础上分别从结构
由于对可靠性和轻量化的双重严格要求,航天结构的优化设计需要充分考虑其所处力学环境,并以最严酷工况作为设计基础。但实际工程中的复杂振动系统并不容易直接测量得到外激励信息,通过测量结构动态响应来反向计算作用在结构上的外力成为一种现实的选择,这便是载荷识别,也称外力辨识。运载火箭飞行过程中承受着复杂多变的外界激励,整流罩由于外界激励而产生的剧烈振动可能对载荷卫星的安全造成直接影响。要保障卫星及箭上其他精
空气舵系统作为飞行器制导和姿态控制系统的重要组成部分,近年来逐渐成为航空航天领域的研究热点。空气舵系统中,传动机构内部的轴承具有较强的接触及摩擦非线性,会对空气舵的力学特性造成较大的影响。因此在空气舵结构的设计过程中,需要建立合适的有限元模型开展分析,以确定该结构的力学特性对各个设计参数的敏感性。然而结构内部的非线性接触会极大地降低有限元分析的计算效率,进而影响结构的设计进程。所以有必要研究一种工
大涵道比涡扇发动机被广泛使用于民用航空客机,低压涡轮作为其重要部件之一,其工作效率的高低直接影响发动机的工作性能,为此一般采用高负荷叶片设计以提高发动机的经济效益,然而飞机在高空巡航中,发动机处于低雷诺数环境下,低压涡轮叶片边界层极易发生分离,因此增大了叶型损失,导致低压涡轮气动性能急剧下降,而上游叶片产生的周期性尾迹将会诱导边界层提前发生转捩,从而达到抑制边界层分离的效果,因此本文采取实验与数值