机翼防鸟撞结构高速冲击模拟及优化设计

来源 :大连理工大学 | 被引量 : 0次 | 上传用户:hz_gyf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
飞行器鸟撞事故对于飞行安全的威胁日益剧增,一方面鸟撞事故给世界各国造成了每年数亿元的经济损失,另一方面鸟撞试验研究成本昂贵。因此以光滑粒子流体动力学方法(SPH)为代表的有限元虚拟仿真技术在飞行器结构抗鸟撞设计及其改进设计方面发挥着重要作用。本文基于SPH方法,研究了一种典型飞机尾翼结构的鸟撞过程及变形机理,并研究了鸟撞位置、角度对结构应力、变形、能量和材料失效行为的影响,最后在此基础上分别从结构和材料两方面对尾翼前缘结构进行了改进设计。本文首先对鸟撞算法进行了数值验证,结果表明采用SPH方法模拟鸟撞刚性平板过程可以准确地反映初始冲击、压力衰减、稳态流动和冲击结束四个阶段,最终提取的撞击中心峰值压力与文献记载的试验数据相对误差约为4.3%。接着将上述鸟体模型应用于一种典型飞机尾翼前缘结构的鸟撞数值分析,分别从结构应力、应变、压力、位移和能量等多个角度分析了鸟撞尾翼前缘的全过程,挖掘了初始结构抵抗鸟撞冲击的不足之处。此外还开展了不同撞击位置和撞击角度的多工况鸟撞分析,结果表明鸟撞过程中鸟体沿靶面法向的速度会影响冲击压力分布,而切线速度则是造成单元失效的重要原因,曲翼是鸟撞过程中主要吸能部件,前梁则起到支撑结构和面外斜冲击时提供扭转刚度的作用。根据以上分析结果,着眼于疏散鸟体动能的抗鸟撞策略,以提高结构刚度和抑制变形为目标,本文分别从结构和材料两方面对前缘结构进行了改进设计,即采用增加单向斜支板结构和采用纤维金属复合材料两种优化方式。增加单向斜支板的目的是通过疏散鸟体动能来降低对曲翼结构的破坏,而采用纤维金属复合材料则直接减轻了前缘约10%质量且提高了整体刚度,并使结构在鸟撞过程中最大变形降低到初始构型约25%,此外本文对比分析了两类改进方案在提高结构抗鸟撞性能的力学机理、鸟撞过程中材料损伤形式和破坏机制等方面的不同,并研究了前缘曲率、蒙皮厚度、纤维金属复合材料构型和铺层方式对抗鸟撞性能的影响。分析结果表明,纤维金属复合材料构型在鸟撞过程中材料主要损伤形式为纤维压缩和基体拉伸,且基体拉伸为主要损伤形式,且适当地减小前缘曲率半径有利于提高刚度,但当曲率半径过小时大面积的基体损伤可能会起相反作用,因此合理的构形设计和铺层设计可显著提高结构抗鸟撞性能。最后本文将改进的前缘结构装配至尾翼整体模型进行了对比分析,验证了本文所采用的计算方法和改进方案是有效的,有限元分析的结果是合理可信的。本文开展的分析结果对工程中飞机尾翼结构损伤容限设计具有指导作用。
其他文献
反分析与优化设计广泛存在于航空航天的各个领域,尤其在飞行器结构中复合材料的复杂力学性能评估以及超燃冲压发动机进气道结构设计等工作。本文基于梯度优化算法对复合材料空间非均质力学参数辨识与进气道形状优化设计进行分析研究,具体内容如下:在非均质弹性力学问题中,基于边界单元法离散二维、三维数值模型,并结合径向积分法准确评估了空间非均质弹性力学的几何变形与位移场,相比于有限单元法与有限差分法等,径向积分边界
钛合金因其具有密度小、比强度高等优异性能常用于航空航天领域的结构零件的制备。对于螺钉、榫结构等紧固类结构件,服役过程中产生微动磨损,进而导致疲劳断裂,严重影响了钛合金构件的安全性能。钛合金表面改性防护一直是重要的研究方向,目前激光冲击强化技术作为新兴的表面强化技术近些年已经用来提高钛合金的微动性能。前人研究报道主要关注激光冲击处理工艺(LSP)对疲劳性能影响,但对接触区域摩擦磨损鲜有报道,微动接触
操纵面颤振在飞机颤振问题中是非常典型和复杂的。其中机翼-副翼颤振类型是其中经典的耦合类型,它一般是机翼弯曲模态、扭转模态和副翼偏转模态振型之间发生耦合而产生的,副翼的偏转刚度和质量平衡等要素均是影响机翼-副翼颤振特性的重要指标,偏转刚度变化或质心位置移动,都有可能导致飞机的颤振速度明显降低,从而影响到飞机的飞行性能。所以,操纵面的颤振特性研究是一项非常有价值和意义的科研课题。本文根据操纵面的颤振机
目的通过体外细胞和体内斑马鱼实验,快速评价复方中药提取物增强免疫力作用,并进行初步机制研究。方法在体外实验中利用RAW264.7小鼠单核巨噬细胞白血病细胞初步评价复方中药提取物的生物活性;再以酒石酸长春瑞滨诱导建立斑马鱼活体免疫低下模型,分别从斑马鱼巨噬细胞生成和吞噬功能、T细胞生成及相关炎症、免疫基因的表达等多个方面,观察复方中药提取物的干预作用。结果体外实验中复方中药提取物有良好的生物安全性,
目前,所有机器都朝着智能化的方向发展,自主驾驶汽车和自主驾驶飞机等正逐渐走进人们的生活。在实现所有交通工具完全自主化之前,将经历有人驾驶与自主驾驶共存的过程。那么自主驾驶交通工具能很好地了解人的意图,做出相应的决策,执行相应的动作,并安全高效地完成驾驶任务就显得尤为重要。可将有人驾驶和自主驾驶共存的交通系统看成一个人在回路系统。基于人在回路的控制思想,采用合适的控制策略,可对自主驾驶交通工具和有人
双曲型守恒律方程是计算流体力学中最重要的控制方程类型之一,其数值解法既是CFD数值方法研究的重点之一,也是难点之一。我们通常只能得到该方程的弱解,因此需要对其进行一些限制处理,才可以得到与物理背景相符的解。限制方法主要从两个方面对问题进行研究:其一是能量稳定方面,其二是熵稳定方面。其中前者的格式结构更简洁、精度更高,近些年来引起了众多学者的关注,能量稳定格式的核心是通量重构思想,基于该格式众多学者
目前越来越多的研究者和科研机构发现了折叠翼尖技术的潜力,开展了广泛的气动弹性研究。而折叠翼尖技术由于其涉及到多变量、多学科、多策略的交叉优化求解,因此具有相当大的复杂程度和计算量。本文针对折叠翼尖的气动弹性问题,提出基于部分动力学等效方法简便快速的对折叠翼尖模型进行气动弹性评估和技术开发,同时通过对机翼模型和部分等效的平板模型开展仿真计算进行初步验证,并应用于大展弦比模型和小展模型的折叠翼尖气动弹
航空发动机作为一种高精度的复杂机械热力系统,常常工作于高温、高压、高振等恶劣的条件下,而长期工作于此类环境下极易造成零部件的寿命的缩减或损毁,进而导致航空事故的发生。因此,开展航空发动机的健康状态监测与管理的相关研究,对我国航空事业发展的经济性、稳定性与安全性具有重大意义。本文依托于与中航工业沈阳发动机设计研究所合作研究的“航空发动机数据综合管理、性能评估与故障诊断软件系统”项目,针对传统专家系统
由于飞行器服役过程中要面临复杂的气动加热,必须对结构进行热防护以保证结构的正常工作。热防护材料通常粘接在飞行器金属蒙皮上,服役过程中面对超高速环境,表面可能会产生应力开裂现象,粘接界面极易产生脱层现象,导致结构性能下降,甚至引发严重的后果,因此,为确保热防护结构的安全稳定,需要对其进行损伤监测。分布式光纤传感器体积小巧,被埋入结构也几乎不会影响被测结构的力学特性,加上其抗干扰性能强,可以满足高密度
飞机结冰给飞机航行带来了巨大的安全隐患,传统的防/除冰技术存在能耗高、操作复杂、污染环境、易造成金属疲劳等弊端。在这种背景下,基于仿生学的超疏水涂层为飞机防冰提供了新思路。本论文使用羟基封端的聚二甲基硅氧烷(HO-PDMS)或聚甲基三氟丙基硅氧烷(HO-PMTFPS)替代部分聚四氢呋喃醚二醇(PTMEG)作为软段,1,4-丁二醇(BDO)和4,4’-二苯基甲烷二异氰酸酯(MDI)作为硬段,反应合成