聚变堆氚增殖剂Li2TiO3小球的制备及性能研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:q1104
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Li2TiO3陶瓷小球具有化学稳定性佳,机械强度高,释氚能力强等优点,被认为是未来聚变堆中固态氚增殖包层的理想氚增殖材料之一。目前,国际热核聚变实验堆(ITER)项目中,Li2TiO3被各国广泛选用作为测试包层模块(TBM)的氚增殖材料,具有十分重要的研究意义。为了探究适合作为聚变堆固态包层增殖剂的Li2TiO3陶瓷小球制备方法,本文详细研究了Li2TiO3粉末的溶胶-凝胶法制备方案,Li2TiO3小球的聚合物辅助沉降法制备方案以及原料中锂源和钛源的摩尔比对产物性能的影响。首先选用溶胶-凝胶法,以不同的原料锂钛摩尔比和烧结过程制备出多组xLi2O·yTiO2相粉末。使用溶胶-凝胶法可以制备出粒径均匀且大小在纳米尺度的粉体,对制备出的粉体进行多种表征工作,以此探究不同烧结过程和原料锂钛比对产物的物相和锂流失率等指标的影响。结果发现以5%过量锂源制备的Li2TiO3粉末具有最高的纯相度,同时烧结温度为1273K,烧结时间超过2h时可以得到高度结晶的Li2TiO3粉末。过低或过高的烧结温度会导致产物中杂项增多或产物达到熔点影响结晶度。采用一种改进后的湿法聚合物辅助沉降法制备出可作为固态包层氚增殖剂的Li2TiO3陶瓷小球,使用的原料为之前制备的不同锂钛比的xLi2O·yTiO2相粉末。研究发现使用5%过量锂源制备的陶瓷小球Li2TiO3相纯度最高,Li2TiO3陶瓷小球的最佳烧结温度应在1208K到1562K之间,在这个烧结温度区间下既可以消除小球内部的孔隙,又能避免成分损失和结晶转变现象的发生。根据力学测试,当烧结温度为1473K时小球受压后发生完全的脆性形变。而随着烧结时间的延长,模量和破碎载荷不断增加。在1473K下烧结10h的样品表现出了最佳的力学性能,最高破碎载荷达到了18N。过高的烧结温度和过长的烧结时间都会导致锂的流失,产物不断缩合产生Li2Ti3O7杂质,甚至当烧结时间超过24h后杂质会代替Li2TiO3成为产物的主相。在1473K下烧结10h的样品在保持优越的力学性能的同时,也具有最低的锂损失率(大约5%)。实验结果表明,Li2TiO3陶瓷小球最佳的烧结条件为1473K烧结10h,在该烧结条件下制备得到的陶瓷小球平均直径为1.2mm,球形度约为1.05。
其他文献
直线电机在精密机床、3D打印、激光切割、数控系统等领域中的应用越来越广泛,需要满足各种工况下的稳定和安全运行的要求。永磁同步直线电机的输出推力与电机绕组电流密切相关,提升电机的电负荷是提升电机推力密度从而极大提高电机输出推力的可行方法,但是,这必然导致电机绕组电流密度极大提升,绕组温升会迅速变大。与有铁芯直线电机的构造相比,无铁芯直线电机的线圈没有足够的散热空间,更应该考虑其温升特性。水冷是电机常
目前,随着现代工业的迅速发展,传统石化资源的日益枯竭所带来的能源危机激发了研究人员对可再生能源的研究热情,而储能元件的开发和能量转换材料的制备是至为关键的一环。MXene目前已经受到了科研人员的广泛关注,得益于其作为一种新型二维过渡金属材料,具有导电性能佳,比表面积大,机械性柔韧性强等特点,在MXene材料中研究最为广泛的为Ti3C3Tx,其具有毒性低,合成工艺成熟,稳定性好等优点,在储能领域具有
内置式永磁同步电动机由于其高效率、高功率密度、高功率因素等特点被广泛的应用于电动汽车、船舶、智能家电等领域。在这些应用中,由于客户对于舒适度的追求和实际的需要,电机能否安静稳定的运行成为一个重要选择指标,因此近年来永磁同步电动机的振动噪声问题引起了广泛的关注。本文围绕一款新能源车用内置式永磁同步电机的电磁振动及噪声问题展开研究。首先分析该电机电磁噪声的来源。从正弦波和变频器供电情况下的气隙磁场出发
不可再生能源的过度使用以及温室气体的超标排放已经成为人类所面临的重大问题之一,安全、方便、高效和绿色地利用可再生能源成为解决该问题的主要方法。超级电容器作为除电池外的一大类储能器件而发挥着重要的作用。二维过渡金属碳化物/氮化物(Mxenes)由于其具有较高的导电率、良好的亲水性和较高的能量储存密度等优异性质成为超级电容器电极材料的热门选择,为解决该问题提供了另一种可能。本论文旨在探索以二维碳化钛(
永磁同步电机(Permanent Magnet Synchronous Machine,PMSM)具有体积小、转矩密度大等优点。随着永磁材料的性能不断提高,永磁同步电机被广泛应用在交通运输、国防军工、航空航天等领域。对于这些可靠性要求高的场合,电机发生故障轻则影响系统运行性能,重则会使电机损坏,导致整个系统停止运行,甚至造成灾难性事故。面对复杂的应用工况需要永磁同步电机具备故障条件下能持续运行的能
全超导托卡马克核聚变实验装置(EAST)是我国自主研制的,实验运行需要辅助加热电源,其中中性束注入系统是最有效的辅助加热手段之一。辅助加热电源由144个PSM电源模块串联组成,PSM电源模块的输入电压为三相交流560V,在经过整流之后,可以得到750V的直流输出电压。但单个PSM电源模块存在一些缺点:直流输出电压不能够连续调节、精度低,电源输出电压的调整精度为单模块的输出电压。对这一问题,本文设计
现代电力系统的规模逐年增加,日益复杂。为了保障电力系统能够稳定运行,很多学者在微机保护装置方面做了大量的研究。现如今设计的微机保护装置不仅要满足它的基本要求,而且对微机保护装置的智能化程度和可靠性等要求也逐渐提高。因此设计并实现一款新型自供电智能微机保护装置是非常有意义的。本文根据项目需求和微机保护装置智能化、测量保护通信一体化等的发展趋势,设计并实现了一款基于μC/OSII操作系统的新型自供电智
原子核电荷半径是原子核的基本属性之一。原子核的形变、壳结构、有效相互作用、原子核的奇特现象、以及核内的物质密度分布与原子核电荷半径密切相关。在最新的数据库中发现了908个核半径实验值,其中大多数核的中子数大于质子数。这说明核电荷半径数据库中不仅包含了稳定核也包含了远离β稳定线的核的半径数据。本文首先用几个常见的核电荷半径公式拟合最新的核电荷半径实验数据,分析不同公式的优缺点,然后对经验公式进行改进
实现400s长脉冲高约束模式(H模)运行是EAST托卡马克装置主线目标之一,而长脉冲H模运行后期再循环过高导致的密度不可控问题和长脉冲H模运行期间大幅度边界局域模爆发带来的瞬态热负荷问题亟需解决。目前EAST装置采用锂化壁处理有效地控制了再循环,实现了100s长脉冲H模运行,然而在更长时间尺度下所面临的挑战将会急剧增加,进一步细致的研究锂化壁处理对中平面再循环的影响将有益于EAST实现400s长脉
中性束注入(Neutral beam injection,NBI)由于加热效率高、物理机制清楚(可有效外推到大装置)成为磁约束核聚变主要的辅助加热和电流驱动的手段之一。射频源相比较与灯丝源有无灯丝升华污染、免维护的优点,此外负离子在1 Me V下依然有较高的中性化效率,所以射频负离子源在2007年被国际热核聚变实验堆(International Thermonuclear Experimental