具有一类特殊密度制约函数的捕食系统的性态分析

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:jiji19860729
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本论文利用常微分方程定性理论和稳定性理论的基本方法,研究了一类食饵受到环境资源限制的捕食系统,分别在两种群和三种群中的情况。本篇论文由三章构成:   第一章叙述问题产生的背景与意义及本文所做的工作,并对一些基本概念和定理做了介绍。   第二章讨论了一类具有时滞的的二种群捕食系统的持久性和日叩,分支的存在性,以及正平衡点的全局稳定性。   第三章讨论了一类三种群捕食系统,对其平衡点的性态进行了分析,给出该系统具有持久性及正平衡点全局稳定的条件。
其他文献
自二十世纪九十年代开始,随着科学技术的发展,越来越多的多变量系统及多维信号,图像的复原、人口动力学、量子化学等诸多学科领域,都涉及大量的泛函偏差分方程,振动性理论作为偏差
学位
分数微分方程在数学和现代科学技术的很多方面有着广泛的应用,比如它在黏弹性理论、电子化学、控制理论、多孔介质等理论上有着重要应用。因此,近些年来,它受到了越来越多学
在最近的几十年的时间里,越来越多的人开始关注和探究中立时滞差分方程及差分方程组,不同类型和阶数的线性、非线性中立时滞差分方程及差分方程组的解的存在性、渐近性和稳定性
经典博弈论研究是建立在收益值确定且局中人没有主观偏好基础上的,这具有一定的局限性:第一,由于博弈环境的复杂性、信息的不完全性、人们认知水平的局限性等因素的影响,收益值是
本篇博士学位论文由四章组成.   第一章,简述有关模糊微分方程,模糊差分方程的研究发展状况,问题产生的背景和本文的主要工作及一些预备知识。   第二章,我们用模糊集
许多有重要价值的实际问题的数学模型为极小极大分布鲁棒优化模型,该类模型存在的分布通常是不确定的,解决这类数学问题的关键是寻找分布的不确定集,对于不确定集的构造方法倍受
带有广义垂直互补约束的随机规划(SMPVCC)问题是确定型带有广义垂直互补约束的数学规划(MPVCC)问题的扩展形式,包含着带有互补约束的随机规划(SMPCC)问题和带有不等式约束的期
非线性算子的不动点理论是非线性泛函分析的重要组成部分,尤其是非线性算子不动点的迭代逼近问题是非线性泛函分析研究的活跃课题.不动点理论的研究起源于Banach,Banach给出了