论文部分内容阅读
20世纪70年代,相继出现了各种广义导数的概念。著名的是Clarke的局部Lipschitz函数的广义方向导数和广义次梯度,但这个概念有许多局限之处。近几年来,不少学者对此问题作了大量研究,得到了许多有意义的结果,讨论了在最优化中的应用。
自Arivel借助于Ben-Tal代数运算刻画了函数的广义凸性,并引入(h,φ)-凸函数的概念以后,一些学者对(h,φ)-函数以及其相关性质进行了研究。近几年来,借助Ben-Tal广义代数运算研究最优化问题越来越引人关注。
本文介绍了弱Lipschitz函数和它的广义次梯度的性质,举例说明了它在优化中的应用,讨论了中值定理、极值的必要条件等;在此基础上介绍了正则弱、D正则弱Lipschitz函数和它的广义梯度的性质,给出了一类非光滑规划最优化的一个结论;最后借助于Ben-Tal广义代数运算引进了一种新函数-(h,φ)-Lipschitz函数,讨论了(h,φ)-Lipschitz函数的广义方向导数的有限性、(h,φ)-正齐次性、(h,φ)-次可加性、下半连续性;(h,φ)-Lipschitz函数的广义梯度的非空性、(h,φ)-凸性、有界闭性等若干性质,讨论了广义方向导数的一个应用,即广义方向导数与(h,φ)-Clarke切锥的关系。