【摘 要】
:
由于其制备、加工工艺与传统互补金属氧化物半导体(COMS)电子学兼容,半导体薄膜被广泛应用于光探测器研究。然而,半导体薄膜中存在的晶界等缺陷会对载流子产生散射,造成载流子迁移率的下降,从而导致薄膜光探测器的光响应性能不够突出;同时,半导体薄膜所能承受的临界弯曲应变较低,进而导致其在柔性光探测器应用受限。针对上述问题,本文将具有高载流子迁移率与机械柔性性能优异的石墨烯与半导体薄膜复合形成异质结,并由
论文部分内容阅读
由于其制备、加工工艺与传统互补金属氧化物半导体(COMS)电子学兼容,半导体薄膜被广泛应用于光探测器研究。然而,半导体薄膜中存在的晶界等缺陷会对载流子产生散射,造成载流子迁移率的下降,从而导致薄膜光探测器的光响应性能不够突出;同时,半导体薄膜所能承受的临界弯曲应变较低,进而导致其在柔性光探测器应用受限。针对上述问题,本文将具有高载流子迁移率与机械柔性性能优异的石墨烯与半导体薄膜复合形成异质结,并由ZnSe单晶纳米线薄膜光敏材料取代ZnSe纳米晶薄膜光敏材料,从而提高光探测器的光响应性能及机械柔性。(1)为了进行对比实验,构筑了基于石墨烯/ZnSe纳米晶薄膜异质结的光探测器并进行相关性能测试。测试结果表明,在1 V偏压下,使用365 nm的紫外灯,光功率设置为1 m W/cm~2,基于石墨烯/ZnSe纳米晶薄膜异质结的光探测器的光电流为45μA,响应时间为550 ms,具有4.2×1012 Jones的探测率和可探测光强为10μW/cm~2,且计算的响应度可达1.45×10~4A/W。(2)基于VLS机理在石墨烯/SiO2/Si基底上生长ZnSe单晶纳米线薄膜,并成功构筑出基于石墨烯/ZnSe单晶纳米线薄膜异质结的光探测器,进行相关性能测试。结果表明,在-1 V偏压下,使用365 nm的紫外灯,光功率设置为1 m W/cm~2,基于石墨烯/ZnSe单晶纳米线薄膜异质结的光探测器的光电流为114μA,响应时间为50 ms,具有6.5×1013 Jones的探测率和可探测光强为1μW/cm~2,且计算的响应度可达2.05×10~5 A/W,其各项性能相对石墨烯/ZnSe纳米晶薄膜异质结的光探测器均有1个量级的显著提升。(3)在3.5 cm×3.5 cm的PET基底上构筑基于石墨烯/ZnSe单晶纳米线薄膜异质结的柔性光探测器,并进行机械柔性测试。测试结果表明,器件在表面承受0.7%的最大弯曲应变时工作性能保持稳定,且在0.7%的弯曲应变下,将器件弯曲10000次或持续弯曲1000 h后,工作性能依旧保持稳定。而且各组器件在弯曲过程中均匀性良好,基于石墨烯/ZnSe单晶纳米线薄膜异质结的柔性光探测器符合柔性光探测器对机械柔性和均匀性的要求。
其他文献
量子点发光二极管(QLED)电致发光器件已应用于透明显示、柔性显示领域,QLED把电能直接转化为光能的技术特性为获取有效光发射提供了新的技术手段,未来在紫外杀菌、工业固化等领域具有广阔发展前景。为了克服现有量子点材料中重金属污染和毒性的问题,论文以g-C3N4为主体材料,通过结构改性分别获得两种不同紫外量子点,并进一步就量子点荧光机理及其在显示器件中的应用展开研究。论文的内容及成果如下:(1)利用
随着科技的不断发展,人类的生活质量越来越高,但与此同时,日益增多的心血管疾病也在不断地向人类发出威胁。心肌梗死以及其他心肌细胞损伤的出现越来越趋于年轻化,常可导致心律失常、休克甚至危及生命。而当人体的心肌细胞受损时,一些特定的心肌标志物将会释放出并进入血液循环。可以通过检测这些游离的心机标志物来诊断患者目前的心肌损伤情况和发生心肌梗死的可能性。因此,对心肌标志物的微量快速检测已具有广大的诊断检测需
高压直流输电具有传输容量大、效率高和低损耗等优点,在跨区域长距离输电领域中得到了广泛的应用。但由于直流输电系统控制复杂,重启耗时长,所以在交流电网电压跌落导致直流母线电压波动时,需要系统具备低电压穿越能力。目前研究中较少关注整流侧电网电压跌落时,因整流侧换流站无法向直流侧输送足够功率,导致直流电压跌落的问题。基于此,本文提出了具有直流母线电压支撑控制能力的低电压穿越控制方法,在整流侧电网电压跌落造
近年来,量子等离子体在微型半导体器件、天体物理系统、高强度激光与等离子体相互作用和湍流等方面均具有重要应用价值,针对量子等离子体的研究也越来越多。当粒子的德布罗意波长与粒子的平均间距大致相同时,就需要考虑粒子的量子效应,量子效应对波在量子等离子体中的传播发挥着重要影响。量子效应主要包括量子衍射效应(玻姆势)、费米统计压、电子自旋效应、相对论效应和电子交换关联效应等。在本文中,我们主要分析和讨论量子
随着半导体工业的发展以及超精密加工技术的日益成熟,半导体器件越来越多样化。其中,硅晶片的应用十分广泛,而表面形貌作为其质量的重要参数之一,检测要求也日趋严格。本文针对硅晶片及其相关的半导体器件的检测需求,提出了基于扫描干涉的红外大视场表面形貌测量方法,在单次测量中可快速获得待测物体大范围的表面形貌特征,为工业生产检测提供更有效精确的手段。本文的主要研究内容如下:(1)对比不同三维形貌重构算法的特点
基于绝缘体上硅的横向双扩散金属氧化物半导体场效应器件(SOI-LDMOS)具有自隔离效果好、可靠性高、消除衬底辅助耗尽效应等优点。广泛应用于智能功率集成电路和高压功率集成电路等相关领域,由于其典型应用环境往往为高压、高电流和高速能量切换的复杂环境,因此,对器件的性能、热管理及其可靠性要求较高。器件的击穿电压和导通电阻是衡量LDMOS器件性能好坏的两个主要参数,在高压大功率集成电路中,期望提高器件的
电磁流量计由于其测量管内无阻挡物及活动部件,被广泛应用于水流量和固液两相流的测量。励磁方式和信号处理方法决定了电磁流量计的测量精度,现有的信号处理方法因滤波器带宽限制、计算量大等因素,存在适用性有限、动态响应速度慢的问题。为此,本文根据电磁流量计传感器输出信号的时域特征,提出一种易于实现、适用性强、测量精度高、动态响应速度快的信号处理方法。根据恒流量解调序列的时域特征,采用时间序列分析方法建立恒流
深紫外(DUV)光电存储器在军事探测、环境监测、医疗分析等军事、民用、商用领域应用广泛,场效应晶体管型光电器件不但具有良好的光响应度,同时还具有信号放大功能,在DUV光电存储器领域有很强的应用潜力。目前对DUV光信号的检测大多基于超宽带隙的无机半导体,但是无机半导体的材料选择范围少、本征刚性、制备过程复杂等缺点限制了其实际应用。有机半导体由于具有材料选择范围大、可溶液处理、成本低等优势受到广泛关注
大功率金属氧化物半导体场效应管(Metal Oxide Semicoductor Field Effect Transistor,MOSFET)是电力电子系统中最常用的开关器件之一,作为核心器件,其故障可能导致系统运行的中断,甚至造成严重的安全事故和经济损失。近年来,以碳化硅(Silicon Carbide,Si C)为代表的第三代宽禁带半导体的出现,使得器件性能出现了大大的提高,但同时在可靠性问
由于传统的化石燃料的大量消耗造成能源短缺和环境污染,需要发展新的清洁能源,光伏并网系统正是将太阳能转化为电能的电力电子系统。使用电力电子半实物实时仿真技术可以有助于减小电力电子系统的研发周期和成本,论文以光伏并网逆变系统为对象研究建模及其实时仿真算法,并进行了实验验证。相比商用的实时仿真器,本文搭建的实时仿真平台不仅在成本上有优势,而且也能打破国外的技术垄断。全文的主要研究内容有:1)概述了本课题