基于热力耦合分析的搅拌头结构设计及接头组织研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:xfjs08jx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自1991年搅拌摩擦焊发明以来,就得到了社会各界的广泛关注,相比于熔焊,搅拌摩擦焊的固相连接避免了大多焊接缺陷,是一种绿色无污染的连接方法。搅拌摩擦焊的过程中,搅拌头直接与被焊金属接触,承受较高的温度及较大的应力循环,搅拌头是搅拌摩擦焊技术的关键。搅拌头的脆性断裂是FSW过程中常遇到的现象,21世纪初期就有诸多学者通过理论计算FSW过程中的受力对搅拌头进行分析,从而辅助搅拌头的设计工作;亦有学者通过实际测量搅拌头的受力,预期获得影响搅拌头受力及断裂的规律。但无论是理论计算还是通过试验测量,对于全过程的搅拌头受力研究都较为困难,因此设计搅拌头的尺寸依然停留在经验公式,搅拌头能够工作的参数范围也只能是试验验证。因此本文提出采用有限元计算软件,建立FSW全过程有限元模型,通过有限元模拟的手段对FSW过程中搅拌头的受力进行研究,进而研究搅拌头的断裂行为。本文详细介绍了CEL模型构建时采用的关键技术及参数,通过预实验测定了FSW过程中被焊金属的温度曲线以及搅拌头的温度分布,矫正了所建立的有限元模型。得到了FSW全过程中搅拌头的温度场、应力场以及等效塑性变形场,并通过Von Mises强度理论进行搅拌头的断裂性评估。后续开展模拟从搅拌头形状设计和焊接工艺参数两个角度模拟了搅拌头的受力及其断裂属性。结果表明:搅拌针根部直径与焊接工艺参数是影响搅拌头断裂的重要参数。同时本文给出了典型尺寸搅拌头的参数应用范围。之后本文设计了不同根部直径的搅拌头进行了FSW焊接试验。拉伸性能规律显示,在合理的搅拌针根部直径参数范围内,随着搅拌针根部直径的增加,焊接接头的抗拉强度及断面延伸率都有所增加。各接头都遵循FSW接头硬度分布,呈现出典型的“W”形,根部直径越大,焊核区的范围越大,焊缝底部硬度区域显示出了较为明显的差别。本文的最后通过响应曲面法建立了抗拉强度与搅拌头和焊接参数之间的二维模型,工艺参数优化表明,在低热输入即低转速和高焊速情况下,搅拌头根部直径对于抗拉强度的影响较大,根部直径越大抗拉强度越高。模型预测采用7mm根部直径的搅拌针在818rpm-248mm/min的焊接参数下焊接后得到的抗拉性能为347MPa,实际焊接得到的性能为345MPa,预测精度较高。
其他文献
随着社会的进步与科技的发展,航空航天领域对于轻质薄壁、复杂曲面构件的需求大幅增加,对构件成形精度的要求也越来越高,传统的刚模拉深已经难于满足要求。充液拉深作为一种用液体代替传统刚性模具的成形方法,在薄壁复杂构件的成形中获得更加均匀的壁厚分布,这得益于在充液拉深过程中建立起了摩擦保持效果;同时,充液拉深成形件具有较高的精度,这与充液拉深时液压的施加可以减小成形件拉深过程中的回弹密切相关。本文在圆筒形
超精密加工指能加工出具有纳米级表面粗糙度和亚微米级几何形状精度表面的技术。用单晶金刚石刀具进行的切削过程通常被称为单点金刚石切削加工,是实现超精密加工的一种重要方式,它最初的发展主要集中在能源和国防相关需求的光学加工。如今,单点金刚石切削加工已经有了更广泛的应用,包括国防和商业应用领域的精密光学自由曲面制造,以及功能性表面的制造。微圆弧金刚石刀具是刀尖圆弧半径小于100μm的圆弧刃金刚石刀具,可以
方钴矿热电材料在中温段(500-550℃)具有较高的转换效率、良好的机械性能和经济实用性,已在深空探测领域和汽车尾气废热回收领域实现了良好的应用,但大规模的投入使用对器件接头的可靠性提出了更高的要求。方钴矿在应用时需要与电极连接组成热电发电器件,在连接过程中需要考虑接触效应问题、元素扩散问题和热膨胀系数匹配问题,因此亟需开发一种连接中间层能够同时有效地解决上述问题。本文设计并制备了 FeCoNiC
微结构表面以其优越的减磨、光学、超疏水等性能,在军事、航空航天等领域受到广泛应用,而要想让微结构表面达到理想的性能,需要加工出较高的形状精度和超光滑表面。目前,表面微结构加工方法有铣削和车削等方法,其中采用微圆弧金刚石刀具的车削法以其原理简单、效果优良等特点,已成为一种重要的加工技术。要想加工出高精度、高质量的微结构表面,对于刀具本身的质量必然也是要求极为严格。随着当前微圆弧金刚石刀具的刃磨质量越
光固化涂料由于其固化速率快、节能环保等优点受到市场广泛关注。但是在复杂的三维表面、填充体系或者膜厚较高的涂层,树脂无法完全固化,导致紫外光固化在涂料领域的应用受到限制。因此,研发一种既可以通过紫外光辐射固化,又可以通过暗反应固化的树脂就具有重要的意义和市场价值。本课题首先以γ-缩水甘油丙基三甲氧基硅烷(KH-560)、甲基六氢邻苯二甲酸酐(MTHPA)、三种丙烯酸树脂(丙烯酸羟乙酯HEA、季戊四醇
复合材料在成型过程中产生固化变形,从而形成制件偏差,偏差影响着产品装配的质量。与金属零件不同,复合材料制件往往采用共固化热压罐成型技术,其结构和成型过程的复杂,需要对产生的偏差进行量化表达,建立与影响因素相关的制件偏差模型,为制件和装配体的偏差分析和补偿提供理论和技术方法。结合复合材料制件结构特点,通过研究复合材料制件固化变形影响因素对偏差的影响,采用新一代产品几何技术规范,建立非均匀有理B样条(
磺胺类抗生素(SAs)是世界上应用时间最早、范围最广的抗生素之一,检出频率高,污染范围广,能在环境中持久存在,对人类、动植物和生态系统都有极大危害。生物法是处理SAs经济实用无二次污染的有效方法,但SAs对微生物的抑制、微生物对SAs降解效率低、功能菌流失等问题限制了生物法的推广应用。为解决以上问题,获得制备周期短、表面性质好、易于固液分离、对SAs有良好耐受性和降解效能的菌丝球降解体系是本课题的
在工业4.0和中国制造2025的时代背景下,大型装备制造业飞速发展,已经成为现代工业中至关重要的组成部分。各应用领域对于大型装备装配性能的要求越来越高,但我国目前大型装备性能不高、装配质量低的问题却一直未得到根本解决。因此,为提升我国大型装备制造业综合实力和国际竞争力,着力提高大型机械、船舶、风洞与航空航天等大型复杂产品的装配精度与性能成为亟需解决的问题。为了解决上述问题,本文对大型复杂装配关键尺
近年来,随着中国经济的高速增长,物联网和云计算的迅速发展,我们迎来了全球信息化的新潮流。随之在电子封装的应用领域内,对于芯片的功率的要求也逐渐加大,因此为了适应电子封装的使用需求,封装材料的导热性能和力学性能标准也随之提高。而单一的传统金属材料,已经难以满足大功率芯片的封装要求,由此,研究人员们开始通过添加某种增强体,来使所得到的复合材料,在尽量保留铜金属优良性能的同时,尽可能改善材料的力学性能。
高熵合金的提出突破了传统合金的设计理念。多主元设计让合金表现出一系列优异的性能,诸如高强度、高硬度、高比强度、高耐磨性、优异的抗高温软化性,以及抗氧化和耐腐蚀性等。将半固态成形技术应用于高熵合金,近4年来才有学者报道。本文以双相面心立方结构的CoCrCu1.2FeNi高熵合金为研究对象,提出热变形诱导球晶化方法制备高熵合金的半固态坯料。设计模拟合金高温加工加热状态的氧化实验,提出了合金的氧化机理,