论文部分内容阅读
在石油基不可降解塑料对生态环境造成的污染越来越严重和世界各国都在加大力度限制塑料使用的国际背景下,发展可持续和可降解聚合物以替代石油基塑料对环境保护和社会可持续发展都具有重大意义。木质生物质是地球上最丰富的可持续天然高分子资源,具有制备塑料替代材料的巨大潜力。然而,木质生物质的结构十分复杂,主要组分纤维素、半纤维素和木质素之间存在复杂的相互作用,且分子内与分子间的强氢键作用使纤维素形成了高结晶性有序结构,导致木质生物质不仅很难溶解,也无法像石油基塑料一样进行热成形加工。本论文以未分离的木质生物质(木粉)、纤维素纸张和微晶纤维素为主要原料,通过将其与动态共价聚合物复合或利用动态共价化学方法对其进行改性,实现了木质生物质的热加工,并将其转化成了多种具有塑料替代潜力的动态自适应性材料,主要包括以下研究内容:(1)利用简单的热压法把木粉和动态亚胺聚合物粉末复合,制备了木粉/动态亚胺聚合物复合材料。首先通过在生物质和动态亚胺聚合物间构建动态氢键及动态亚胺键作用有效改善了两者的界面相容性,使制备的复合材料具有良好的力学性能,其杨氏模量、抗张强度、弯曲模量和弯曲强度分别能够达到1.92GPa、47.1MPa、4.74GPa和73.2MPa。研究和表征复合材料的动态热力学性能、应力松弛行为和自适应性能发现,木粉/动态亚胺聚合物复合材料具有优异的多层复合性能、形状塑造性能、自修复性能和再加工性能。木粉/动态亚胺聚合物复合材料还表现出优异的阻水性、抗水性和热稳定性。另外,动态亚胺键的可逆性还使其具有良好的降解性能和循环利用性能。木粉/动态亚胺聚合物复合材料不仅制备方法简单,而且综合性能优异,有望被应用为石油基塑料及其复合材料的新型替代材料。(2)利用简单的浸渍法把动态亚胺聚合物树脂复合在纸张的纤维网络中制备了纸张/动态亚胺聚合物复合材料。通过在复合材料内部构筑纤维素纤维和动态亚胺聚合物的互穿网络结构,并在两者间构建氢键相互作用,使复合材料表现出优异的力学性能,其抗张强度和杨氏模量分别达到71MPa和3.2GPa。通过研究和表征其动态热力学性能、应力松弛行为和热驱动自适应特性发现,纸张/动态亚胺聚合物复合材料具有良好的多层复合性能、自修复性能和形状塑造性能。纸张/动态亚胺聚合物复合材料还表现出良好的热稳定性和阻水性能、较低的吸水率、优异的抗水性和耐有机溶剂性,同时兼具超高的水蒸气和氧气阻隔性能。另外,其在常温下就能够完全降解在二胺的稀溶液中,且降解产物可以被完全回收利用。这些优异的性能表明纸张/动态亚胺聚合物复合材料可以替代传统石油基塑料作为新型“绿色”包装材料。(3)利用高碘酸钠对微晶纤维素进行氧化处理获得双醛纤维素,通过席夫碱反应使用小分子二胺对其进行交联,制备了纤维素基动态亚胺聚合物。获得的纤维素基动态亚胺聚合物具有良好的力学性能,其抗张强度和杨氏模量分别可以达到46.6MPa和2.87GPa。通过变温红外和分子动力学模拟对其结构进行表征发现,利用二胺对双醛纤维素进行交联能够有效限制纤维素分子间氢键的形成,并在纤维素分子链间引入动态亚胺交联网络,有助于使纤维素基动态亚胺聚合物具有良好的热加工性能。DMA测试结果显示其Tg为153~185℃。应力松弛测试和自适应性能研究结果表明纤维素基动态亚胺聚合物具有良好的自修复和再加工性能。纤维素基动态亚胺聚合物还兼具较高的热降解温度(?300℃)、超低的热膨胀系数(0.1ppmK-1),以及优异的阻水性、抗水性、耐溶剂性和降解性能。另外,通过复合纤维素基动态亚胺聚合物和木粉还可以获得高强度、高模量、低吸水率、高抗水性和可降解的新型木塑复合材料。以上结果表明,纤维素基动态亚胺聚合物不仅可以直接被应用为新型生物质基塑料,而且可以用于制备可持续和可降解的“绿色”复合材料。(4)同样利用高碘酸钠对微晶纤维素进行氧化处理,并将其和植物油基长链二胺聚合,制备了全生物质基动态亚胺聚合物。首先通过改变双醛纤维素的氧化度和动态亚胺网络的交联密度使聚合物的强度和韧性具有良好的可调控性,其杨氏模量、抗张强度和断裂伸长率分别可以在4.7~1320MPa、3.1~33.5MPa和2.5%~108%范围内调控。通过循环拉伸、变温拉伸、变温红外和分子动力学模拟对其力学性能和结构进行表征发现,全生物质基动态亚胺聚合物的强度和韧性主要由其结构中动态亚胺网络和多重动态氢键网络的协同效应所决定。全生物质基动态亚胺聚合物也具有良好的热加工性能、应力松弛行为和自修复性能,其Tg为25~65℃、力学性能的自修复率接近90%。另外,其还表现出超高的热降解温度(473℃)、超低的热膨胀系数(≤0.2ppmK-1)和极低的吸水率(?0.5%),同时其还兼具优异的阻水性、抗水性、耐溶剂性、抗酸碱腐蚀性和降解性能。此外,通过复合全生物质基动态亚胺聚合物和木粉可以制备出力学性能优异、吸水率低、抗水性强、耐酸碱腐蚀和可降解的新一代木塑复合材料。因此,全生物质基动态亚胺聚合物在生物质基塑料和可持续复合材料领域都具有巨大的应用潜力。