时效硬化型轻质超高锰钢的强化机理及冲击磨损行为研究

来源 :北京科技大学 | 被引量 : 1次 | 上传用户:b479676614
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统高锰钢(Hadfield钢)在室温下能获得单相奥氏体,具有优良的加工硬化能力和抗冲击能力,因此广泛用作冲击载荷下的耐磨材料。然而较低的屈服强度和初始硬度,导致材料在低冲击载荷下不能完全发挥其耐磨性就发生塑性变形,降低了使用寿命。本文设计出一种轻质超高锰钢(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服强度、高初始硬度、良好冲击韧性等特点,适用于低冲击载荷下的磨损条件。通过研究时效处理后的相转变、压缩变形、冲击磨损分析了实验钢的强化机理和磨损机理。实验钢经1050℃保温1.5h水韧处理后获得单相奥氏体,时效后奥氏体基体会弥散析出纳米级别的κ’-碳化物,有助于提升屈服强度和初始硬度。在550℃时效2h综合力学性能最佳,与仅水韧处理相比屈服强度提高107.4%,初始硬度提高28.7%,其抗拉强度为1041.7 MPa、屈服强度为1002.7 MPa、断后伸长率为17.6%、冲击韧性(V型缺口)为62 J/cm2和硬度为268.5 HB。随着时效温度升高(550℃~900℃)相转变的顺序为:κ’→纳米-κ’+β-Mn→亚微米-κ’+β-Mn+α→纳米-κ’。其中四种类型的κ相析出涉及尺寸、形貌和分布被总结,包括晶内型:纳米-κ’(<50nm),亚微米-κ’(>100nm)。晶间型:κ*(~1μm)。以及片层状κ,存在α+κ群落中。在550℃时效下,纳米-κ’能促进β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃长时间时效下,由于α相的大量析出,其形成主要借助于γ→α反应。通过纳米压痕测试,获得了不同时效温度下基体与析出相的纳米硬度。计算得到理论层错能(SFE)为82.3 mJ/m2,由于平面滑移软化效应,变形模式以位错平面滑动为主,随着变形量的增加,主要的亚结构演变顺序为:平面位错队列→平面位错配置(偶极子和Lomer-Cottrell锁)→泰勒晶格→微带。本研究利用压缩变形,观察到了高层错能下被抑制的形变孪晶以及一种多晶结构。通过分析理论临界孪生应力(σT),当外加应力大于σT,形变孪晶出现。多晶结构内部以位错缠结为主,通过波状滑移形成了位错胞。并提出了多效协同的强化机理:1)位错平面滑移导致滑移带细化和微带形成,2)形变孪晶,3)多晶结构。这些形变亚结构的出现共同限制了位错运动,促进基体内位错密度的不均匀,从而增强了应变硬化。低冲击载荷(0.5 J)下,时效后实验钢耐磨性更好,磨损百分比更低(0.55%~0.57%)。但在高冲击载荷(4 J),由于时效后的加工硬化速率和冲击韧性降低,其磨损百分比(0.48%)高于水韧处理(0.21%)。通过观察磨损亚表层中的白层,发现随着时效时间的延长,白层的平均厚度不断减小。随着冲击载荷的增加,轻质超高锰钢奥氏体基体内的位错密度增大,形成了复杂的平面位错亚结构,如泰勒晶格和微带。然而在相同磨损条件下,随着时效时间的增加,同样观察到了平面位错亚结构由简单向复杂演变。说明短程有序结构(κ’-碳化物)的形成能增强平面滑移软化效应。
其他文献
随着社会计算系统的蓬勃发展,越来越多的信息和特征被用于用户建模,如画像信息、位置、行为和偏好等。社交媒体为分析用户情绪、个性等内在状态提供了各种各样的资源。用户的个性特征作为一种有价值的资源,可以反应被研究用户的内在特点,这启发了一项新的研究领域,即个性计算。现阶段,该领域的研究大部分集中在通过分析用户数据自动识别用户个性,很少将用户个性特征纳入到推荐系统中,更没有研究用户的个性特征对用户建模、兴
同步现象是复杂动态网络最重要的集体行为。网络同步性能的分析和同步控制是复杂网络研究的两个重要方面。如何建立数学模型解释自然界中的同步现象,如何设计同步机制并应用于实际问题都是本领域具有重要意义的研究课题。Kuramoto模型是描述复杂动态网络系统一种重要的数学模型,在物理学、生物学以及控制理论与工程应用中具有广泛的应用。Kuramoto模型作为一类耦合振子模型,可以有效地近似描述节点状态存在耦合关
随着航空航天工业的发展,对轻质、高强、高温抗氧化性能材料的要求越来越高,而Ti2AlNb基合金具有密度低、比强度高、热强度好以及耐高温腐蚀性好等特点,因而得到了广泛的关注。Ti2AlNb基合金材料结构件多以热成型方式进行制备加工,但由于其热变形抗力大,有效热加工窗口较窄,成材率不高,组织对成型工艺很敏感等问题,使得Ti2AlNb基合金进行塑性加工比较困难,成为了 Ti2AlNb基合金大规模生产的瓶
钛及钛合金具有比强度高、耐腐蚀性好等优点,被广泛应用于航空、航天、化工等领域。变形加工是钛合金部件的主要成型工艺。作为密排六方结构金属重要的塑性变形机制,形变孪生能够在提高钛强度的同时不损失塑性,因而在钛板中引入高密度孪晶是提高其力学性能的重要思路。不同类型孪生及变体对钛的微观组织与力学性能影响各异,阐明变形过程中孪生择优规律及孪晶与其他界面间的相互作用,是实现对变形组织和织构的预测和调控的基础,
亚共晶铝硅合金中初生铝(α-Al)的细化和共晶硅(Si)的变质是提高合金铸造成形性和力学性能的重要手段。稀土(RE)被广泛研究证明既可以作为细化剂使α-Al晶粒细化,又可作为变质剂改善共晶Si的粗大片层状形貌,RE具有的低成本优势也推动其得到研究。然而,RE的细化作用容易受到添加量和铸造工艺参数(静置时间、冷却速度等)的影响,其细化机理还没有准确的定论;此外,在较高冷速下,RE变质共晶Si的微观机
硅衬底GaN基微盘激光器模式体积小、功耗低,在光电集成、单光子发射、化学生物探测等领域具有重要的应用前景。常规GaN基微盘激光器采用空气为光场限制层的“蘑菇状”结构,电注入难、热阻较高,仅实现了光泵浦激射。本论文围绕硅衬底GaN基微盘激光器的载流子输运、光场调控、光损耗抑制和热传导等关键科学问题,从结构设计、材料生长、器件制备和表征分析等多方面进行了深入研究。取得的结果如下:(1)创新性提出了“三
海洋环境下钢筋腐蚀问题严重,导致混凝土结构的耐久性和安全性下降。本文以低合金钢筋为研究对象,以合金元素Cr和氯敏阻锈剂对钢筋长期腐蚀行为的影响机理为研究目标,采用自然环境挂片实验、现代物理表征技术、电化学检测方法、第一性原理模拟计算、机器学习等手段,研究了含Cr低合金高强钢筋在微溶液中的腐蚀电化学机理及其在自然环境中的长期腐蚀行为、氯敏阻锈剂对高强钢筋的长期缓蚀行为和机制、Cr和氯敏阻锈剂对高强钢
锌及锌合金由于具有良好的生物相容性和可降解性而成为新一代可降解血管支架材料。但是,由于缺乏严格的测试标准,锌及锌合金的降解机理尚未达成共识。液体环境是影响金属材料腐蚀行为的一个重要因素。体外测试时,模拟体液中的无机盐及有机成分(如蛋白质)的差异会使材料表现出不同的腐蚀行为。因此,围绕液体成分对腐蚀的影响这一问题,利用电化学测试和浸泡实验研究了纯锌在不同模拟体液中的腐蚀行为,并研究了腐蚀对力学性能的
多形性转变是一类只发生结构转变而成分不变的相变。研究合金的多形性转变,不仅可以加深对其相结构的理解,而且可以指导合金的组织与性能调控。压力是影响多形性转变的主要因素之一,在已报道的合金材料压力下的多形性转变研究工作中,主要以单主元固溶体合金为主。对于多主元合金的多形性转变以及与组元之间的关系研究较少,仍有待进一步探讨。高熵合金,通过混合多主元带来最大化混合熵的成分设计理念,可以获得单相固溶体结构。