PECVD法沉积氮化硅薄膜退火前后电学性能的变化研究

来源 :第十五届全国半导体集成电路、硅材料学术会议 | 被引量 : 0次 | 上传用户:yokuchan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  利用等离子体化学气相沉积(PECVD)法沉积SiN薄膜,衬底采用多晶硅(厚度大约为330±40μm,电阻率为0.5~2.0Ωcm),采用常规制备参教条件沉积SiN薄膜,之后对样品进行不同条件的热处理.热处理采用快速热退火(RTA)的方式在氮气氛下进行退火温度为350℃-1100℃,退火温度为15s-180s.最后,通过运用准稳态光电导衰减法(QSSPCD)对样品进行测试,从而获得薄膜少于寿命.从测试结果可以看出,退火引起大量H的逸出,使得样品的缺陷态密度大大增加,进而导致少子寿命降低,尤其在退火温度大于650℃后,少子寿命下降趋势急剧增大.
其他文献
提出具有环形阴极的横向高压SOI器件新结构,该结构采用环形阴极,利用电场的曲率效应以提高耐压。作为应用实例,在3μm埋氧20μm顶硅上设计出耐压大于600V SOI LDMOS,与常规结构相比,新结构耐压有6.74%的提升,而导通电阻仅增加2.14%。该结构与常规CD工艺完全兼容,不增加工艺难度。
介绍了在一种互补双极CMOS兼容工艺中通过减压/低温外延增加有效外延层厚度,及采用LDD结构,分别提高BJT和MOSFET耐压特性的工艺与器件优化方案和结果。利用Silvaco TCAD工具,对工艺及器件进行了模拟仿真,并制作出BVDSS=18V~20V的MOS管和BVCEO>12V,fT>4.2GHz的NPN管,有效提高了器件的耐压特性,扩展了该工艺的应用范围。
介绍了双胞10叉指集电极上引出结构的SiGe HBT,其BVCBO和BVCEO分别为11V和6V,Early电压为37v。在Ic=40mA,Vce=4V的条件下,测得其截止频率fT可达22GHz,最高振荡频率可达12.8GHz(未作去嵌入)。
根据Y参数分析的特点,通过对共发射极交流小信号等效电路进行合理的简化,同时考虑到发射极串联电阻的影响,提出了一种新的SiGe HBT基极串联电阻的提取方法。采用这种方法,利用SiGe HBT交流小信号参数的器件模拟结果和实测数据,提取了包括基极串联电阻在内的小信号等效电路模型参数,并据比研究了连接基区横向宽度对基极串联电阻的影响,该方法的有效性也从中得到了验证。
使用新开发SONOS器件模拟器进行SONOS器件的电学特性模拟和评估。模拟器基于基本物理模型,详细考虑了SONOS栅介质层中的载流子隧穿、俘获、复合、发射和载流子堆积过程,并且能够计算拥有复合栅介质的SONOS器件;可以有效地评估及优化SONOS存储器的设计。模拟了采用复合的隧穿介质层和高-k阻挡介质层,来改进SONOS的电学性能。改进的SONOS器件在保持与传统SONOS器件相同保持栉陛的情况下
利用X射线对在不同负载条件下的VDMOS进行了辐射试验,观察到VDMOS不同的辐射行为,在较大的负载情况下,VDMOS阈值电压漂移发生了“回弹”(rebound),比无辐射情况下更大,表明VDMOS在大功率负载情况下发生了辐射退火效应,辐射损伤在大功率负载条件下得到了部分修复。及时退火效应导致阈值电压漂移的回弹主要因素,可以认为是VDMOS弱反型界面态电荷的退火引起,等效电荷量为-2.3×1011
报道了L波段低端短脉宽360w硅微波脉冲大功率晶体管研制结果。该器件采用微波功率管环台面结终端结构、非线性镇流电阻等新工艺技术,器件在上述频带内,脉宽10μs,占空比10%和40V工作电压下,全带内脉冲输出功率大于360w,增益大于8.5dB,效率大于50%。
采用量子模型,研究了MOS器件不同介质材料和栅结构栅泄漏电流,该模型基于Schrodinger-Poisson方程自洽全量子数值解,特别适用于高k栅介贡和多层高k栅介质纳米MOSFET,具有概念简单,运算效率高、求解稳定的特点,模拟得出栅极电流与实验结果符合。研究结果表明,采用Al2O3栅介质材料对栅电流的减少有明显的作用。为最大限度地减少MOS器件的栅电流,需要优化叠栅结构中界面层的厚度。对器件
介绍了聚酰亚胺薄膜的制备工艺,研究了薄膜的刻蚀特性,发现湿法腐蚀得到的聚酰亚胺薄膜图形受最小尺寸的限制。对于O2等离子刻蚀,改变参教得到了刻蚀速率随O2流量和功率的变化曲线;对于RIE干法刻蚀,通过两次测量得到了更加精确的刻蚀速率。测量了薄膜的应力特性、硬度、杨氏模量及化学试剂对其的腐蚀性质。聚酰亚胺薄膜在SiC MEMS加工中作为牺牲层,重点研究了退火对释放后结构应力的影响,找到了在材料允许温度
提出一种VDMOS与低压控制电路之间抗串扰的新隔离结构。通过二维器件仿真软件MEDICI验证,能够有效防止VDMOS漏极反偏造戍的衬底电流进入CMOS电路,CMOS电路中出现闩锁效应时的VDMOS漏端电压从-1V提高到-4V,已经应用于一款功率集成电路中,经过初步验证,具有一定应用价值。