几乎周期点相关论文
拓扑动力系统理论中有许多基本定理,涉及到周期,几乎周期点,极小集,回归点,ω-极限点,轨道闭包,f与fp的关系及可迁映射等.人们熟知......
几乎所有的混沌定义都有长期行为的不可预测性,但是混沌现象并非完全相同,不同的混沌定义会在实际分析中有不同的意义。对某些特殊空......
我们经常在紧致动力系统中讨论极小集和几乎周期点,而且在紧致动力系统中极小集和几乎周期点都有很多优异的性质.
由于开区间,n......
目的 研究Tychonoff拓扑动力系统和相应Stone-(C)ech扩充动力系统之间的关系,尝试将紧致动力系统中的结论推广至Tychonoff拓扑动力......
首先,证明了如果序列系统具有初值敏感性且敏感常数的下极限为正数,则在强一致收敛下,极限系统也具有初值敏感性,并举例说明序列系......
研究了半群作用的传递属性.证明了一个系统是thick传递的当且仅当它是弱混合的,其中作用半群是一个交换的幺半群;此外,还证明了一......
讨论了符号动力系统上的几乎周期点、回归点及非游荡点,还讨论了它的一些其他动力性质。......
设(X, d, f )为拓扑动力系统,其中 X 为局部紧可分的可度量化空间, d 为紧型度量, f 为完备映射,用2X 表示由 X 的所有非空闭子集构......
在2002年廖公夫、王立冬通过引入正则移位不变集,探讨了几乎周期性与SS混沌集的关系,而本文则是在几乎周期点稠密的基础上,证明了几乎......
讨论底空间为局部紧致的第二可数Hausdorff空间动力系统中几乎周期点的存在性问题.利用映射f的扩充,紧致动力系统中一定存在几乎周......
设(X,d)是紧致度量空间,f是X上的连续自映射,AP(f)、CR(f)分别表示f的几乎周期点集和链回归点集.证明了:如果f有伪轨跟踪性,那么f|(--AP(f):--A......
在极小映射的基础上构造了几乎周期点稠密系统,并运用拓扑传递性与稠密性研究了几乎周期点稠密系统与Li-Yorke混沌的关系,证明了几......
动力系统是紧致度量空间上的连续自映射。在动力系统理论中,全部重要的动力性态完全集中在它的测度中心上,研究极小性也就变为必然。......
研究了几乎周期点集的一些性质,给出了几乎周期点的等价命题进而证明了限制在其ω-极限集上的子系统是自同胚的。......
引进正则移位不变集的概念,证明了有正则移位不变集的紧致系统在几乎周期点集中存在SS混沌集,特别地,具有正拓扑熵的区间映射在几乎周......
主要研究由M-系统所诱导的集值动力系统。设(X,d)是紧致度量空间,(K(X),H)是X中所有非空紧子集所组成的空间,并赋予由d导出的Hausdorff度......
(X,f)与(Y,g)为拓扑动力系统,f与g是拓扑半共轭的,对基于拓扑半共轭特殊性质扩充的混沌性进行了探讨,作为应用,给出了区间映射拓扑熵大于0......
在强一致收敛条件下研究了序列映射与极限映射之间关于几乎周期性和逐点周期跟踪性的关系,所得结果对强一致收敛下几乎周期点和逐......