论文部分内容阅读
尽管选择性集成方法的研究和应用已取得了不少重要成果,然而其实现方法计算复杂度高、效率低仍是应用该方法的一个瓶颈。为此,提出了一种新的高速收敛的选择性集成方法。该方法使用C4.5决策树分类器作为基学习器,利用高速收敛的群体智能算法来寻找最优集成模型,并在UCI数据库的多值分类数据集上进行了实验。实验结果表明,该方法计算效率高,其精度和稳定性比Bagging方法都要高,可以成为一种高效的选择性集成的实现方法。