结合LSTM的强化学习动态环境路径规划算法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:lbwang2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在路径规划领域已经涌现出了诸多的优秀的经典算法,但这些传统方法往往基于静态环境,对于动态可变环境缺乏处理能力.本文提出一种结合LSTM强化学习动态环境路径规划算法.首先,本文以环境图像作为输入,最大限度了保证了原始的信息来源.而后构建了自动编码器用来对环境图像进行特征降维,降低了整体模型的复杂程度.最后采用深度强化学习算法DDPG进行路径规划,其中Actor部分采用LSTM的网络构建,使Actor在决策时可以参考前序信息,做到有预测的避开动态障碍.最后通过实验证明了本文算法的可行性和高效性.
其他文献
矩阵分解是推荐系统中应用最为广泛的方法之一,但其对物品隐因子及其相似性学习不够充分.社会网络分析中认为相互连接的个体有一定共性,受此启发提出一个能够借助近邻关系有
随着社交媒体的迅速发展,谣言通过社交媒体迅速传播,识别社交媒体网络上的谣言是社交网络研究中一个至关重要的问题.本文提出了一种新的考虑注意力机制的微博谣言检测模型,考
为了满足指数级增长的大数据存储需求,现代的分布式存储系统需要提供大容量的存储空间以及快速的存储服务.因此在主流的分布式存储系统中,均应用了纠删码技术以节约数据中心