一种新的考虑注意力机制的微博谣言检测模型

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:MKLIN
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着社交媒体的迅速发展,谣言通过社交媒体迅速传播,识别社交媒体网络上的谣言是社交网络研究中一个至关重要的问题.本文提出了一种新的考虑注意力机制的微博谣言检测模型,考虑到卷积神经网络(CNN)提取到的特征对输出结果影响力问题,在经典的文本卷积神经网络(Text CNN)上引入了注意力机制,通过CNN中的卷积层学习微博窗口的特征表示,再根据每个特征表示对输出结果的影响力不同通过注意力机制赋予不同的权重来进行谣言事件的检测.研究结果表明,本文提出的微博谣言检测模型准确率达到了96.8%,并且在召回率和F1值上也有提升,即本文提出的新的微博谣言检测模型具有更好的谣言识别能力.
其他文献
矩阵分解是推荐系统中应用最为广泛的方法之一,但其对物品隐因子及其相似性学习不够充分.社会网络分析中认为相互连接的个体有一定共性,受此启发提出一个能够借助近邻关系有