论文部分内容阅读
多形态血细胞信号影响细胞分类与计数。提出了一种希尔伯特黄变换(Hilbert-Huang Transform,HHT)和神经网络相结合的血细胞识别算法。利用经验模态分解(Empirical Mode Decomposition,EMD)和Hilbert变换提取血细胞信号能量特征,与时域特征一起构成特征向量;建立神经网络模型进行训练与仿真,以实现对多形态血细胞信号的识别。仿真结果表明,该算法识别准确率高,具有良好的识别效果。