不可小觑的三角形中线

来源 :初中生世界·七年级 | 被引量 : 0次 | 上传用户:O70607227
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  三角形中线定义:在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线. 全文查看链接
其他文献
从课本中我们知道,多边形的一个内角与它的外角共用一条射线,两者既有区别,又有联系. 最基本的区别就是概念不同,最基本的联系就是两者之和为180°. 下面从区别和联系两个方面来深入探讨一下.  一、 多边形的内角和  在推导多边形的内角和公式时,用到了转化的数学思想,将多边形的内角和问题转化成若干个三角形的内角和的问题.即从n边形的一个顶点出发,可以引(n-3)条对角线,它们将n边形分成(n-2)个
期刊
期刊
众所周知,思想是行动的指南,数学解题亦是如此,这句话在本章中体现得尤为明显. 为了帮助同学们很好地复习这一章的内容,本文以近几年的中考试题为例,详细介绍几个重要的数学思想在解题中的应用,供同学们学习时参考.  一、 分类讨论思想  数学中的分类讨论思想,也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类.将一个数学问题根据题设分为有限的若干种情况,在
在三角形里求角度的问题,都离不开三角形内角和定理以及由这个定理推导出来的外角性质. 熟记定理并灵活使用才能顺利解决所给的问题. 下面让我们由课本例题与习题的链接分析来体会在三角形里的用角策略.  【例题展示】苏科版数学教材七年级下册(下文用课本指代)第29页例2  如图1,△ABC的角平分线BD,CE相交于点P,∠A=70°,求∠BPC的度数.  【例题精析】  课本例题的思路:  根据三角形的内
一、 生活中的平移现象  生活中的平移现象随处可见,如列车在笔直轨道上行驶,生产线上的传送带传送产品,物体随升降电梯上下移动,推拉门窗等等.  二、 建筑物的平移  建筑物碍事了怎么办?拆掉吗?我们是否也可以将它平移呢?  南京的江南大酒店,建成于1995年,是一座星级酒店,总建筑面积5 424 m2,总重约为8 000吨. 2001年由于新模范马路的拓宽,大楼就碍事了,拆掉的话,又耗时又可惜.
期刊
平行线的条件及性质是学习几何知识的基础,初学这部分内容时,常常由于内容的相似出现混淆错用的现象,今天王老师就带领大家一起走进“平行线”,细致辨析平行线的条件及性质,以期达到不犯错误或少犯错误的目的.  一、 明确“三线八角”这一前提  平行线的条件与性质都依托于“两条直线被第三条直线所截”(三线八角)这一基本图形,因此要掌握平行线条件及性质,必须先弄清楚图1:直线AB、CD被第三条直线EF所截,形