Hamilton—Jacobi方程黏性解的连续性

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:fy9112003
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
考虑了在极小测度集Mc0唯一遍历时, Hamilton-Jacobi方程的黏性解uc: M→R关于平均作用量c的连续性. 证明了在相差一个常数的意义下, 黏性解uc(x)(A↓x∈M)关于c是连续的.
其他文献
结合p-投影体和p-几何最小表面积的定义,首先,得到了一类凸体p-几何最小表面积的单调性.然后,给出了另外一类凸体p-几何最小表面积的积分表达式,并由此定义了这类凸体的p-混
研究了一类出现在化学反应器理论中的奇摄动边值问题.在适当的条件下,用合成展开法构造出该问题的形式近似式,并应用微分不等式理论证明了解的存在性及其渐近性质.
本文对平面正方形区域上不可压缩的Navier-Stokes方程,进行傅立叶展开后,截断得到五模类Lorenz方程组.给出了该方程组定常解及其稳定性的讨论,证明了该方程组吸引子的存在性,
Blackmore和Norton引入了矩阵乘积码的概念, 并给出其对偶码的形式, 但未涉及其自对偶码的研究. 给出了存在矩阵使得构成的矩阵乘积码成为自对偶码的充分必要条件及其应用举
研究了一类具非线性边值条件的非线性方程的奇摄动问题,运用合成展开法构造了问题的形式渐近解,并用微分不等式理论证明了所得渐近解的一致有效性.
讨论了一类在分支值线性部分具有两个零特征根且只有一个Jordan块,而扰动项为佗次的齐次平面向量场.讨论此类系统的分支的一个重要工具是Melnikov函数,然而当佗较大时,不易得到相
分数阶变分迭代法(FVIM)是一种处理分数阶微分方程的有效工具.用分数阶变分迭代法求解了时间分数阶类Boussinesq方程,并且作为一种特殊情况,得到了类Boussinesq方程B(2.2)的单孤
研究Klein—Gordon—Zakharov方程初边值问题的Legendre谱方法.在先验估计的基础上,证明了该格式的稳定性和收敛性,并得到最优阶误差估计.另外,还设计了一个半隐格式,并给出数值例
利用齐次平衡法寻找Hirota变换,再通过Hirota变换将方程转化为Hirota双线性形式,进一步解释两种方法之间的联系,并得出将一些方程转化为Hirota双线性形式的一般步骤.