论文部分内容阅读
为了降低传统的有向无环图支持向量机(DAG-SVMs)多类分类方法在模型构建过程中节点选择的随机性,提高最终分类结果的准确率,提出了一种基于熵变的有向无环图支持向量机(E-DAG-SVMs)的组合策略。该策略通过计算各支持向量机在分割样本集时引发的熵变,依据信息增益最大化原则来决定节点的选择,进而构建多类分类模型。实验结果表明了该策略的有效性。