论文部分内容阅读
针对传统变量选择方法对复杂非线性化工模型进行变量选择时,由于缺乏输出变量的有效监督,导致所选择输入变量不能有效解释输出变量的问题,提出基于虚假最近邻点Gamma检验(Gamma test,GT)准则的变量选择方法。首先借鉴虚假最近邻点法,实现对所有变量的全面搜索;再采用能够在输出变量监督下进行非线性系统噪声估计的GT准则,计算各输入变量置零前后数据噪声的伽马统计量,得到输出变量对各输入变量的敏感度,以此为依据进行变量选择。使用线性、非线性模型验证了该方法的有效性。最后对氢氰酸复杂非线性化工过程建模进