论文部分内容阅读
在基于人工神经网络的信号源盲分离算法中,普遍需要使用通过源信号的概率密度函数定义的评价函数(score function)作为网络的激活函数(Activation function).由于信号源未知,因此无法获得有关评价函数的信息,传统的方法是利用某些特定的非线性函数来替代源信号的评价函数.这种利用非线性函数替代源信号评价函数的方法能够成功地实现同系混合(homogeneous mixture)信号的盲分离,但都不能分离杂系混合(hybrid mixture)信号.文献[1]利用非参数法概率密度函数估计的