First Chinese ultraviolet–visible hyperspectral satellite instrument implicating global air quality

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:huangmajun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In response to the COVID-19 pandemic, governments worldwide imposed lockdown measures in early 2020, resulting in notable reductions in air pollutant emissions. The changes in air quality during the pandemic have been investigated in numerous studies via satellite observations. Nevertheless, no relevant research has been gathered using Chinese satellite instruments, because the poor spectral quality makes it extremely difficult to retrieve data from the spectra of the Environmental Trace Gases Monitoring Instrument (EMI), the first Chinese satellite-based ultraviolet–visible spectrometer monitoring air pollutants. However, through a series of remote sensing algorithm optimizations from spectral calibration to retrieval, we successfully retrieved global gaseous pollutants, such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO), from EMI during the pandemic. The abrupt drop in NO2 successfully captured the time for each city when effective measures were implemented to prevent the spread of the pandemic, for example, in January 2020 in Chinese cities, February in Seoul, and March in Tokyo and various cities across Europe and America. Furthermore, significant decreases in HCHO in Wuhan, Shanghai, Guangzhou, and Seoul indicated that the majority of volatile organic compounds (VOCs) emissions were anthropogenic. Contrastingly, the lack of evident reduction in Beijing and New Delhi suggested dominant natural sources of VOCs. By comparing the relative variation of NO2 to gross domestic product (GDP), we found that the COVID-19 pandemic had more influence on the secondary industry in China, while on the primary and tertiary industries in Korea and the countries across Europe and America.
其他文献
Liquid crystal polarization optics based on photoalignment technique has found pervasive applications in next- generation display platforms like virtual reality and augmented reality. Its large-scale fabrication, however, remains a big challenge due to th
Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (
为了延长车辆全面检查和转向架检查周期,日本东海铁路客运公司在实施常规检查的基础上采用X射线衍射法来评价轴承的健全性.采用这种新方法可以把握目视检查无法判断的轴承老化状态.通过取得的大量现场数据证明了利用X射线衍射法进行评价是有效的.
Despite the considerable effort, fast and highly sensitive photodetection is not widely available at the low-photon-energy range (~meV) of the electromagnetic spectrum, owing to the challenging light funneling into small active areas with efficient conver
变压器是交流电压转换必不可少的装置,在降低重量和减小体积上仍有改进的余地,特别是低频变压器,其体积较大.如今,半导体技术的进步使变压器能够在任意频率下工作,其体积变小、重量变轻.上世纪90年代左右,日本采用半导体技术研发的电力电子变压器用作辅助电源装置的隔离型DC-DC变换器,2000年以后欧洲开发了用于主回路的电力电子变压器.介绍几种电力电子变压器,抛砖引玉,以期待未来能够促进这种技术的进一步发展.
Manipulation of the light phase lies at the heart of the investigation of light-matter interactions, especially for efficient nonlinear optical processes. Here, we originally propose the angular engineering strategy of the additional periodic phase (APP)
Metasurfaces have proven themselves an exotic ability to harness light at nano-scale, being important not only for classical but also for quantum optics. Dynamic manipulation of the quantum states is at the heart of quantum information processing;however,
Impurity doping is an effective approach to tuning the optoelectronic performance of host materials by imparting extrinsic electronic channels. Herein, a family of lanthanide (Ln3+) ions was successfully incorporated into a Bi:Cs2AgInCl6 lead-free double-
Direct generation of chirp-free solitons without external compression in normal-dispersion fiber lasers is a long-term challenge in ultrafast optics. We demonstrate near-chirp-free solitons with distinct spectral sidebands in normal- dispersion hybrid-str
As smaller structures are being increasingly adopted in the semiconductor industry, the performance of memory and logic devices is being continuously improved with innovative 3D integration schemes as well as shrinking and stacking strategies. Owing to th