基于决策树C4.5集成算法的图像自动标注

来源 :计算机应用研究 | 被引量 : 12次 | 上传用户:tianxiuli_ok
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对决策树C4.5集成算法中基分类器多样性差的问题,提出了修正矩阵correction matrix-C4.5(CMC4.5)集成学习算法,并将其应用于图像自动标注。该算法首先对特征子集进行多样性处理,然后通过构造修正矩阵依次得到基分类器C4.5全新训练数据集,实现训练数据集之间的多样性和属性特征完整性,完成集成算法。对比实验表明,CMC4.5集成学习方法较大地提高了分类准确率。将CMC4.5集成学习与图像标注相结合,实现了基于CMC4.5的图像自动标注。
其他文献
情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based
将移动边缘计算(mobile edge computing,MEC)引入车载自组网形成车载边缘计算,从而使服务提供商直接利用MEC服务器在网络边缘服务用户,以提升用户体验质量和丰富用户满意度。研究了在车载边缘计算环境下车辆用户的计算卸载问题,提出相应的系统模型与使用讨价还价博弈方法以解决MEC服务器如何根据不同的任务要求与车辆信誉值分配自身的计算资源以执行不同的卸载任务。通过实验仿真验证了该方案的
会计信息市场与一般商品市场有很大的差异,主要原因在于会计信息不同于普通商品。会计信息有以下主要特征:
针对粒子群优化算法容易陷于局部最优,且初始聚类中心选择对K-均值算法的影响较大,提出一种融合邻域扰动的简化粒子群K-均值初始优化聚类算法(ADPSO-IKM)。根据集群度思想实现优化初始聚类中心,在粒子群算法公式中加入邻域扰动项,避免陷入局部最优,并且算法遵循自适应度优化学习策略增强全局搜索能力,进一步提高了算法精度。通过仿真测试表明,提出的ADPSO-IKM算法能加快收敛速度,可防止粒子的早熟,