车载边缘计算中基于信誉值的计算卸载方法研究

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:yuanpeihai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
将移动边缘计算(mobile edge computing,MEC)引入车载自组网形成车载边缘计算,从而使服务提供商直接利用MEC服务器在网络边缘服务用户,以提升用户体验质量和丰富用户满意度。研究了在车载边缘计算环境下车辆用户的计算卸载问题,提出相应的系统模型与使用讨价还价博弈方法以解决MEC服务器如何根据不同的任务要求与车辆信誉值分配自身的计算资源以执行不同的卸载任务。通过实验仿真验证了该方案的有效性和可靠性。
其他文献
情感分类是用于判断数据的情感极性,广泛用于商品评论、微博话题等数据。标记信息的昂贵使得传统的情感分类方法难以对不同领域的数据进行有效的分类。为此,跨领域情感分类问题引起广泛关注。已有的跨领域情感分类方法大多以共现为基础提取词汇特征和句法特征,而忽略了词语间的语义关系。基于此,提出了基于word2vec的跨领域情感分类方法 WEEF(cross-domain classification based