论文部分内容阅读
根据隐含语义分析(LSA)理论,提出了一种文本聚类的新方法.该方法应用LSA理论来构建文本集的向量空间模型,在词条的权重中引入了语义关系,消减了原词条矩阵中包含的"噪声"因素,从而更加突出了词和文本之间的语义关系.通过奇异值分解(SVD),有效地降低了向量空间的维数,从而提高了文本聚类的精度和速度.