论文部分内容阅读
针对传统图像匹配计算量较大、匹配速度慢、抗干扰能力差的问题,将混沌算子与微粒群优化算法相结合,提出一种鲁棒性强、计算速度快的图像匹配方法。该算法利用微粒群优化算法的收敛快速性和混沌运动的遍历性、随机性等特点,实现了非遍历性搜索。在算法初始化阶段,对粒子位置混沌初始化;在算法运行期间,对优秀个体进行混沌扰动避免落入局部最优。提高了算法对多维空间的全局搜索能力,并可以有效避免早熟现象。实验结果表明该算法的图像匹配具有快速性和较高的准确性,对解决噪声情况下的图像匹配问题十分有效。