Toward implantable devices for angle-sensitive, lens-less, multifluorescent, single-photon lifetime

来源 :光:科学与应用(英文版) | 被引量 : 0次 | 上传用户:zhoushuoqd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements;however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities. Recent advances in angle-sensitive image sensors and single-photon avalanche diodes have provided a path toward ultrathin lens-less fluorescence imaging, enabling plenoptic sensing by extending sensing capabilities to include photon arrival time and incident angle, thereby providing the opportunity for separability of fluorescence point sources within the context of light-field microscopy (LFM). However, the addition of spectral sensitivity to angle-sensitive LFM reduces imager resolution because each wavelength requires a separate pixel subset. Here, we present a 1024-pixel, 50 μm thick implantable shank-based neural imager with color-filter-grating-based angle-sensitive pixels. This angular-spectral sensitive front end combines a metal–insulator–metal (MIM) Fabry–Perot color filter and diffractive optics to produce the measurement of orthogonal light-field information from two distinct colors within a single photodetector. The result is the ability to add independent color sensing to LFM while doubling the effective pixel density. The implantable imager combines angular-spectral and temporal information to demix and localize multispectral fluorescent targets. In this initial prototype, this is demonstrated with 45μm diameter fluorescently labeled beads in scattering medium. Fluorescent lifetime imaging is exploited to further aid source separation, in addition to detecting pH through lifetime changes in fluorescent dyes. While these initial fluorescent targets are considerably brighter than fluorescently labeled neurons, further improvements will allow the application of these techniques to in-vivo multifluorescent structural and functional neural imaging.
其他文献
MXenes, an emerging class of two-dimensional materials, exhibit characteristics that promise significant potential for their use in next generation optoelectronic sensors. An interplay between interband transitions and boundary effects offer the potential
With the increasing demand for multispectral information acquisition, infrared multispectral imaging technology that is inexpensive and can be miniaturized and integrated into other devices has received extensive attention. However, the widespread usage o
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique
The nano-opto-electro-mechanical systems (NOEMS) are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical, electrical and mechanical modes. To dat
Long-lived interlayer excitons (IXs) in van der Waals heterostructures (HSs) stacked by monolayer transition metal dichalcogenides (TMDs) carry valley-polarized information and thus could find promising applications in valleytronic devices. Current manipu
Photodynamic therapy (PDT) is one of the most appealing photonic modalities for cancer treatment based on anticancer activity of light-induced photosensitizer-mediated reactive oxygen species (ROS), but a limited depth of light penetration into tissues do
The trivalent lanthanides have been broadly utilized as emitting centers in persistent luminescence (PersL) materials due to their wide emitting spectral range, which thus attract considerable attention over decades. However, the origin of the trivalent l
Bound-states-in-the-continuum (BIC) is an emerging concept in nanophotonics with potential impact in applications, such as hyperspectral imaging, mirror-less lasing, and nonlinear harmonic generation. As true BIC modes are non-radiative, they cannot be ex
Histology involves the observation of structural features in tissues using a microscope. While diffraction-limited optical microscopes are commonly used in histological investigations, their resolving capabilities are insufficient to visualize details at
We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excit