论文部分内容阅读
近年来,恒成立问题频繁出现在高考数学试题中,主要涉及求参变量的范围问题,考查函数、不等式、数列、导数、圆锥曲线等知识,让试题的深度与广度得到加深,并渗透着换元、化归、数形结合、函数与方程等思想与方法,能够考查学生的综合解题能力.因此,在高中数学学习过程中,学生要注重对这类题目的解题技巧的总结,通过反复练习,达到融会贯通的目的.教师要给予学生正确指导,帮助学生提高解决恒成立问题的能力.
一、函数最值法
函数最值法是学生比较常用的一种解题方法,适用于恒成立的相关题目.在教学过程中,教师要让学生根据题意,利用函数最值法来解决实际问题.这种方法简单省时.
点评:在运用函数最值法解决恒成立问题时,要注重对题目进行变形处理.
二、分离参数法
在遇到含参数的不等式题目时,要将含参数的不等式进行变形,把参数分离出来,将不等式变形为一端只含参数的解析式,这种方法十分便捷有效,有利于学生快速解决问题.
例2已知2a-3b=1,证明直线ax by=5恒过定点.
解:由2a-3b=1,得a=12(3b 1),带入直线方程后分离参数b,得(x-10) b(3x 2y)=0;
由方程x-10=0,3x 2y=0可得,x=10,y=-15;
所以(x-10) b(3x 2y)=0表示经过两直线x-10=0和3x 2y=0的交点(10,-15)的直线系方程.
因此,当2a-3b=1时直线ax by=5恒过定点(10,-15).
点评:分离参数法主要是将参数单独放在一端,另一端则为不含参数的函数,然后将其转化为函数最值问题进行处理.这样,就能将复杂的恒成立问题简单化,教师应该向学生加强这方面的指导,让学生能够用分离参数法解决高中数学中的恒成立问题.
三、数形结合法
运用数形结合法也可以解决恒成立问题.首先要构造函数,作出满足已知条件的函数图形,然后找出函数与函数图形在各区间上的关系,最后得出结论,求得参数范围.
点评:在这道恒成立题目中,如果直接进行求解是很困难的,但是在构造函数后,利用函数图形来分析两个函数间的关系,这样就非常直观,也便于得出最后答案.另外,学生通过观察构造的函数,能够全面掌握各函数图形代表的含义,这样学生就能加深对已知条件的理解,今后在遇到类似的题目时,也能轻易解决.
总之,高中数学恒成立题型很多,解法也很多,在实际的解题过程中,要充分了解给定函数的特点和性质,具体问题具体分析,选择最恰当的解题方法,尽量将问题等价转化,这样就能很轻松的解决问题.教师要注重对学生进行这方面的指导,让学生在面对恒成立问题时,能够运用有效的方法解决难题.
一、函数最值法
函数最值法是学生比较常用的一种解题方法,适用于恒成立的相关题目.在教学过程中,教师要让学生根据题意,利用函数最值法来解决实际问题.这种方法简单省时.
点评:在运用函数最值法解决恒成立问题时,要注重对题目进行变形处理.
二、分离参数法
在遇到含参数的不等式题目时,要将含参数的不等式进行变形,把参数分离出来,将不等式变形为一端只含参数的解析式,这种方法十分便捷有效,有利于学生快速解决问题.
例2已知2a-3b=1,证明直线ax by=5恒过定点.
解:由2a-3b=1,得a=12(3b 1),带入直线方程后分离参数b,得(x-10) b(3x 2y)=0;
由方程x-10=0,3x 2y=0可得,x=10,y=-15;
所以(x-10) b(3x 2y)=0表示经过两直线x-10=0和3x 2y=0的交点(10,-15)的直线系方程.
因此,当2a-3b=1时直线ax by=5恒过定点(10,-15).
点评:分离参数法主要是将参数单独放在一端,另一端则为不含参数的函数,然后将其转化为函数最值问题进行处理.这样,就能将复杂的恒成立问题简单化,教师应该向学生加强这方面的指导,让学生能够用分离参数法解决高中数学中的恒成立问题.
三、数形结合法
运用数形结合法也可以解决恒成立问题.首先要构造函数,作出满足已知条件的函数图形,然后找出函数与函数图形在各区间上的关系,最后得出结论,求得参数范围.
点评:在这道恒成立题目中,如果直接进行求解是很困难的,但是在构造函数后,利用函数图形来分析两个函数间的关系,这样就非常直观,也便于得出最后答案.另外,学生通过观察构造的函数,能够全面掌握各函数图形代表的含义,这样学生就能加深对已知条件的理解,今后在遇到类似的题目时,也能轻易解决.
总之,高中数学恒成立题型很多,解法也很多,在实际的解题过程中,要充分了解给定函数的特点和性质,具体问题具体分析,选择最恰当的解题方法,尽量将问题等价转化,这样就能很轻松的解决问题.教师要注重对学生进行这方面的指导,让学生在面对恒成立问题时,能够运用有效的方法解决难题.