纳米技术走进生活

来源 :科学之谜 | 被引量 : 0次 | 上传用户:plbplbplb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  1959年12月,物理学家理查德·费曼发表了名为“底部充足的空间”的演讲,他的主题是“在微小等级操纵和控制事物的问题”。在这次演讲中,费曼不满足于在针头上刻字母的技术(这在当时已经是非常前沿的技术了),他问:“我们为什么不能把整本的百科全书写在针头上?”
  他给出了解决这个问题的答案:我们并不是尽量将字母变小去刻字,而是操纵针头的原子本身去形成字母,纳米技术被正式提出。1990年,首次出现了操纵原子“写出”的字母,一共用了35个原子的英文字母“IBM”,实现了费曼的设想。
  纳米技术的设想出现以来,一直被定义为“明天的世界”,已经有上百部科幻小说描述过它。但其实,纳米技术的工业革命已经悄悄兴起,在一些领域已经开始大显身手了。那么,纳米技术究竟有何不同,它将如何改变我们的世界?
  什么是纳米技术?
  纳米是长度单位,但是这个单位非常的小,只有一米的十亿分之一。我们很难感受到1纳米到底有多小,想象一下,一根头发是75000纳米,一条DNA双链差不多是2纳米宽。
  所谓纳米技术,就是在可控制的条件下,改变原子的连接结构以创造一种新的分子。纳米技术生产不同种类的纳米级材料(由纳米粒子组成),纳米粒子结构尺寸在1~100纳米之间。
  20世纪初人们已开始用蒸发法制备金属及其氧化物的纳米粒子。20世纪中期人们探索机械粉碎法使物质粒子细化,现在制备纳米粒子的方法主要分为化学方法和物理方法两大类。
  物理方法一般是“自上而下”的,即通过物理的方法将比较大的物质破坏成纳米级,再将这些纳米级的小单元转化成适宜的纳米粒子。物理法分为粉碎法和构筑法,其中,粉碎法主要是采用研磨、压碎等方式;构筑法包括气体蒸发法,混合等离子体法等。
  化学法主要是“自下而上”的方法,即通过适当的化学反应(包括液相、气相和固相反应),从分子、原子出发制备纳米颗粒物质。化学合成法包括气相反应法和液相反应法,其中比较常用的方法有:溶胶凝胶法、氧化还原法、气相分解法、气相合成法等。
  纳米粒子不同凡响的特性
  宏观技术将大的物质块以相对粗糙和近似的模式排列以建造微芯片、运动汽车、橡木餐桌和摩天大楼。而纳米技术则能够操纵单个原子,使人类技术提升到新的层面。
  纳米粒子最重要的不是它的尺寸特别小,而是在纳米级下,物质的性质会有很大的不同。因为我们面对的是单个的原子或分子而不是成团的物质,在这里,量子效应成了最重要的影响因素。对于宏观物质来说,不管形状、大小如何,物质的性质不会改变,但是对于纳米级物质来说,面积体积比、相对尺寸改变,物质的性质也会改变。
  举个例子,纳米粒子通常会有意想不到的光学性质,因为纳米粒子可以限制它们的电子并产生量子效应,比如黄金的纳米粒子在溶液中就会呈现紫红色。纳米粒子可以形成悬浮液,这是因为颗粒表面与溶剂的相互作用强到足以克服密度差异;如果是非纳米材料,这种相互作用通常会导致材料下沉或漂在液体中。纳米粒子中不均匀的电子分布会导致磁性,磁性纳米粒子引起了不同学科研究人员的兴趣。纳米粒子独特的机械性也在许多重要领域得到了应用,这些机械性能包括弹性模量、硬度、应力和应变、粘附力和摩擦力等。
  通过在分子水平上改变事物的大小和形状,科学家们能够依据特定目的来定制纳米粒子的性质。例如,“纳米线”的直径仅为1纳米,因此限制了电子在其宽度上的流动,纳米线的电导率可以被精確地控制。“量子点”的厚度为1原子,直径为50原子,直径的大小可做调整控制。因为它的物理形状,量子点可将紫外线转化成特定频率的可见光,并且发出光的频率会随着量子点的尺寸改变而变化。纳米管是由一层1原子厚的碳卷成的一个圆柱体。不同的角度卷圆管,达到不同的直径,可以改变其机械、电气、热学和光学性质。在目前发现的所有材料中,这种结构意味着这些管材具有最高的抗拉强度,比钢材强了100多倍。
  纳米技术已经进入日常生活
  现在人类已经进入一个人人都使用、需要纳米技术的时代。许多早期科幻小说中所描述的纳米技术已经实现,只不过是以我们不易察觉的方式,比如它是智能手机或者其他各种设备的组件材料,但是我们并不知道这些是建立在纳米技术上的。纳米技术已经悄然渗透到了我们生活的各个方面,成为我们日常生活中的一部分。
  如今,从防晒霜、衣服、汽车、太阳镜到电脑和显示屏,纳米技术的应用无处不在,哪怕是在最日常的生活中。比如,防晒霜通常含有二氧化钛(TiO2)和氧化锌(ZnO)的纳米颗粒,两者都是高度紫外线吸收剂。有些衣服中也添加二氧化钛和氧化锌来抵御紫外线,同时在衣服中添加二氧化硅纳米粒子用于防水,银纳米粒子用于抗菌。2016年,中国研究者还利用相同的原理制成了一种布,这种布并不是阻断紫外线,而是吸收紫外线并将它转化为电能。同样地,加州大学的研究者发明了一种隐形的布,这种布使用黄金纳米粒子来使物体周围的光重新分布,达到隐形的效果。
  随着我们对纳米工程更加深入了解,纳米技术将对我们生产的东西有更多的影响。例如,我们正在拓宽纳米管的应用。纳米管和量子点一样,目前科学家正在深入探索它在医学方面的应用,不仅仅是在诊断和药物输送方面,而且还因为它们可以用作“纳米海绵”。纳米管在人体内会被很快地自然排出,因此,当用作纳米海绵时,它会附着血液中的毒素,将毒素带出体外。
  类似地,研究人员也在探索纳米管清理溢油和净化水,纳米管与污染物结合,然后使用专门针对其纳米结构定制的过滤器进行去除。纳米技术未来的发展趋势将会包括:纳米机器人、纳米传感器、癌症研究、遗传疗法和医学、疏水材料、食品和农业等。
  纳米技术的风险
  纳米技术在我们的生活中有着广泛的应用,因此关于纳米技术的风险更加引起了我们的重视。问题之一是纳米粒子是否有毒,早期的一些研究已经证实了同一材料的纳米粒子比起更大的粒子确实存在一定的毒性——小鼠的某些器官受到纳米粒子的严重影响,某些水生生物接触到纳米粒子后,其后代骤减。如果纳米粒子对其他的动物有影响,那么它对人体也很可能有相似的影响。纳米粒子可以通过呼吸、摄入、皮肤吸收和药物注射的方式进入人体,一旦它们进入人体,它们就可以在人体内自由的转移,血脑屏障对一些纳米粒子来说,根本不是屏障。
  纳米技术理论涉及一种称为自组装的过程,在这种过程中,分子被刺激,从而自发地形成某种结构,而不是通过强加力、堆叠、粘合使分子结合。这使我们不得不考虑如果自组装过程变得不可控制了,该怎么办?如果一个特定的碳结构继续无限地进行自组装,将所有可用的碳(包括你)转换成没有用且统一的物质块怎么办?
  当然,对于以上的两点问题,我们目前并不需要太过担心。因为很大程度上,纳米技术是在人为可控制的情况下,重新生产自然界已经存在的一些元素。随着对纳米技术的深入研究,我们越了解这个系统,就越能学会更加安全地做事情,那些我们认为最危险的纳米粒子在未来可能变成最普通的纳米粒子。
其他文献
根据广义相对论认为,黑洞的中心是一个密度无穷大的奇点。但在弦理论中,事情就不是这样了。  弦理论认为,物质不是由基本粒子组成,而是由微小的弦组成的。根据这个理论,黑洞的中心其实并不是一个密度无穷大的奇点,而是缠绕在一起的弦组成的弦球。黑洞的质量越大,弦球就越大,而且弦球的密度不是无穷大的,所以物理学定律不会在这里失效,掉进黑洞的信息也会保留在这个弦球上。这样,黑洞并不是一个真正的黑洞,它其实是一个
期刊
2016年,麻省理工学院一位年轻的女博士登上了著名的科技讲坛——TED的演讲台,她演讲的题目是“怎样拍摄一张黑洞的照片”。3年后,全世界数十个科研机构的200多名科学家共同努力,终于拍摄出人类第一张黑洞照片,当年的这位女博士作为庞大科研团队中的一员,在“冲洗”黑洞照片的过程中又发挥了极其重要的作用。2019年4月10日,随着黑洞照片的正式发布,这位女博士在“脸书”上的照片刷爆了社交网络,“走红”全
期刊
在解释这个问题前,我们需要先了解一下手机的内存。手机内存分为两种,一种称为随机存取内存(RAM),它支撑手机应用程序的运行,存放手机应用程序运行后的数据等;另一种内存称为只读内存(ROM),它存放着手机系统和应用程序的文件,在一般情况下,手机只能读取里面的数据,不能修改和删除里面的数据。  当我们使用手机软件时,它们的运行数据会占据RAM,打开的程序越多,软件消耗的內存就越多。但当我们关闭软件时,
期刊
地球自转就像一个旋转的陀螺,自转轴就是地轴。地轴是一条垂直于南北两极的假想线,科学家发现,地轴的位置并非一成不变,它有时会相对地表漂移,有时会像“点头”般晃动。  科学家研究了20世纪以来的地轴漂移数据,发现在20世纪,地轴每年漂移10厘米,到了21世纪,地轴漂移的距离已大于10厘米/年。是什么原因造成地轴如此“不安分”呢?目前公认的原因有三个:冰期后反弹、格林兰岛冰盖损失和地幔对流。  地球曾经
期刊
一条粉色的鱼被打捞上岸,过了一会儿,这条鱼迅速融化了,最后只剩下裸露的鱼骨和牙齿,这是为什么?  这种鱼是阿塔卡马狮子鱼,它是研究人员偶然发现的。在一次深海探索中,研究人员用特制相机探索了秘鲁海岸附近的阿塔卡马海沟。这里水深7500米,水温恰好高于冰点,压强极大,阿塔卡马狮子鱼便生活在这里,它们有三种颜色:粉色、紫色和蓝色。这片水域里,阿塔卡马狮子鱼站在食物链的顶端。  这种鱼身体最坚硬的地方是牙
期刊
环境因素会遗传  有一句谚语我们都听说过,叫“富不过三代,穷不过五服”,意思是富贵传不过三代,贫穷也不会延续到第九族,鼓励人们勤俭节约,发愤图强。  但是最近,美国西北大学的一项研究却颠覆了这个传统说法:在生物学里,贫穷不仅影响一代人,它还会改变基因,一代代地传承给子孙后代。  这个观点并不奇特,环境可以改变基因的理论随着科学研究的发展已经逐渐深入人心。有研究机构发现经历了美国“9·11事件”的孕
期刊
东西方各自  “天经地义”的做法  东西方的一些做法差别真大,有时甚至到了针锋相对的地步。比如我们东方人认为,孩子生下来,母婴睡一起乃是天经地义的事情;八九岁的孩子跟父母同床睡都不是什么怪事。可是在西方,“天经地义”的做法恰恰是母婴分开睡,小宝宝单独睡自己的床,最好是睡独立的房间。最初他们的理由是,这样可以自小培养孩子的独立性,后来又多了一条医学上的依据:母婴分开睡可以降低婴儿因呼吸障碍猝死的风险
期刊
宇宙中存在大结构,是因为宇宙之外还有其他宇宙?  一个超大的空洞,坐落在数不尽的星系之中;许多个类星体聚集在一起,横跨了数十亿光年;许多伽马射线暴构成了一个圈,横跨了可观测宇宙6%的范围……随着观测能力的提高,天文学家开始在宇宙中识别出了许多巨大的结构。  但这里有一个问题:它们本应该都不存在!  自从哥白尼提出了日心说以后,大家才明白,地球在宇宙中的位置没什么特别之处。之后,天文学家还把这种思想
期刊
《星际迷航》系列影视作品相信很多人都看过,里面装备最先进的宇宙飞船“进取号”,在星云里极速前进,在太空中引发绚丽的辉光,这一美景简直让天文爱好者们着迷。  但现实中,这一场景有没有可能真的实现呢?假设我们现在正在为人类策划第一次星际旅行,我们应该从哪里着手呢?  选择目的地  不管何种旅行,我们第一步要做的就是选择目的地,为星际旅行选择目的地更不能马虎。首先要考虑的应该是距离问题。科学家们发现,半
期刊
笼罩在印度昌巴尔河上的雾气逐渐散去,阳光星星点点地撒在河面上,一只恒河鳄爸爸以背为筏,载着上百只小鳄鱼出来见见世面了。  小鳄鱼们实在是太多了,摩肩接踵,相互推搡,总有些小鳄鱼刚爬到爸爸的背上,又刺溜滑入水中,扑通一声响,溅起朵朵水花。掉入水中的小鳄鱼有的仍在奋力爬到爸爸的背上,有的则很快被水吸引了,在河水中游起泳来。整个过程中,鳄鱼爸爸好似真变成一叶在河上漂浮的小舟,注视着远方,似乎在冥想,偶尔
期刊