论文部分内容阅读
采用支持向量回归机(SVR)与微分进化策略相结合的方法,对新疆2个地区的月平均忙时话务量进行预测.由微分进化策略良好的全局搜索性质,以预测平均相对误差为目标函数,对SVR的超参数进行寻优,利用优化后的SVR月平均忙时话务量进行预测.与传统的网格寻优算法和RBF神经网络方法进行比较,结果表明,SVR的泛化能力与微分进化策略的搜索能力相结合,可以得到更好的预测效果.