论文部分内容阅读
代价敏感学习算法的目的是最小化各种代价总和,与其他学习算法一样,它必须面对过度拟合这个挑战性问题,即分类器可以较好地拟合训练数据,但对测试或实际数据的效果较差。针对代价敏感学习的这些缺点,提出两个克服过度拟合的策略。第一个滤波技术策略针对TCSDT分类建立,滤波后的概率估计值被用于对每个分离属性的潜在误分类代价计算,并延缓潜在大误分类代价的分离属性的优先选择,最后,采用交叉验证方法决定m的值。第二个策略与基于标准错误的Laplace剪枝方法不同,阈值剪枝采用一个预先定义的阈值集合(跟代价有关)来确定决策树